#'
#' rmatclust.R
#'
#' $Revision: 1.13 $ $Date: 2025/05/20 08:21:15 $
#'
#' Simulation of Matern cluster process
#' naive algorithm or BKBC algorithm
#'
#' rMatClustHom Interface to C code for stationary case (BKBC)
#' rMatClust General case (naive or BKBC)
#'
#' Copyright (C) Adrian Baddeley and Ya-Mei Chang 2022-2023
#' Licence: GNU Public Licence >= 2
rMatClustHom <- function(kappa, mu, R, W=unit.square(), ...,
nsim=1, drop=TRUE, inflate=NULL,
saveparents=FALSE) {
check.1.real(kappa) && check.finite(kappa, xname="kappa")
check.1.real(mu) && check.finite(mu, xname="mu")
check.1.real(R) && check.finite(R, xname="R")
if(!is.null(inflate)) {
check.1.real(inflate) && check.finite(inflate, xname="inflate")
stopifnot(inflate >= 1)
}
check.1.integer(nsim)
stopifnot(kappa >= 0)
stopifnot(mu >= 0)
stopifnot(R > 0)
## trivial cases
if(nsim == 0) return(simulationresult(list()))
if(kappa == 0 || mu == 0) {
## intensity is zero - patterns are empty
empt <- ppp(window=W)
if(saveparents) {
attr(empt, "parents") <- list(x=numeric(0), y=numeric(0))
attr(empt, "parentid") <- integer(0)
attr(empt, "cost") <- 0
}
result <- rep(list(empt), nsim)
return(simulationresult(result, nsim=nsim, drop=drop))
}
## shift window to convenient origin
oldW <- W
oldcentre <- as.numeric(centroid.owin(Frame(oldW)))
W <- shift(oldW, -oldcentre)
## enclose it in a disc
rD <- with(vertices(Frame(W)), sqrt(max(x^2+y^2)))
## optimal inflation
if(is.null(inflate)) {
rE <- if(R < rD) (rD + R) else rD
inflate <- rE/rD
}
## Prepare for C code
storage.mode(kappa) <- "double"
storage.mode(mu) <- "double"
storage.mode(R) <- "double"
storage.mode(rD) <- "double"
storage.mode(inflate) <- "double"
##
resultlist <- vector(mode="list", length=nsim)
for(isim in seq_len(nsim)) {
## call C code
if(saveparents) {
z <- .Call(SR_rmatclusAll,
kappa, mu, R, rD, inflate,
PACKAGE="spatstat.random")
} else {
z <- .Call(SR_rmatclusOff,
kappa, mu, R, rD, inflate,
PACKAGE="spatstat.random")
}
## unpack
xo <- z[[1]]
yo <- z[[2]]
if(saveparents) {
xp <- z[[3]]
yp <- z[[4]]
parentid <- z[[5]]
}
## shift back to original window
xo <- xo + oldcentre[1L]
yo <- yo + oldcentre[2L]
if(saveparents) {
xp <- xp + oldcentre[1L]
yp <- yp + oldcentre[2L]
}
## restrict to original window
retain <- inside.owin(xo, yo, oldW)
if(!all(retain)) {
xo <- xo[retain]
yo <- yo[retain]
if(saveparents) {
parentid <- parentid[retain]
retainedparents <- sort(unique(parentid))
parentid <- match(parentid, retainedparents)
xp <- xp[retainedparents]
yp <- yp[retainedparents]
}
}
## save as point pattern
Y <- ppp(xo, yo, window=oldW, check=FALSE)
if(saveparents) {
attr(Y, "parents") <- list(x = xp, y = yp)
attr(Y, "parentid") <- parentid
attr(Y, "cost") <- length(xo) + length(xp)
}
resultlist[[isim]] <- Y
}
result <- simulationresult(resultlist, nsim, drop=drop)
return(result)
}
rMatClust <- local({
## like runifdisc but returns only the coordinates
rundisk <- function(n, radius) {
R <- radius * sqrt(runif(n, min=0, max=1))
Theta <- runif(n, min=0, max=2*pi)
cbind(R * cos(Theta), R * sin(Theta))
}
rMatClust <-
function(kappa, scale, mu, win = square(1),
nsim=1, drop=TRUE,
...,
n.cond=NULL, w.cond=NULL,
algorithm=c("BKBC", "naive"),
nonempty=TRUE,
poisthresh=1e-6,
saveparents=FALSE, saveLambda=FALSE,
kappamax=NULL, mumax=NULL, LambdaOnly=FALSE) {
## Matern Cluster Process
## Poisson (mu) number of offspring, uniform inside disc
check.1.integer(nsim) && check.finite(nsim, xname="nsim")
stopifnot(nsim >= 0)
if(nsim == 0) return(simulationresult(list()))
## Catch old scale syntax (r)
if(missing(scale)) scale <- list(...)$r
check.1.real(scale)
stopifnot(scale > 0)
## algorithm choices
doLambda <- isTRUE(saveLambda) || isTRUE(LambdaOnly)
conditioning <- !is.null(n.cond)
if((conditioning || doLambda) && !isTRUE(spatstat.options("developer"))) {
## The naive algorithm must be used
## Change defaults
algorithm <- if(missing(algorithm)) "naive" else match.arg(algorithm)
nonempty <- if(missing(nonempty)) FALSE else isTRUE(nonempty)
## Override given arguments with a warning
reason <- if(conditioning) "for conditional simulation" else "for intensity calculation"
algorithm <- warn.reset.arg(algorithm, "naive", reason)
nonempty <- warn.reset.arg(nonempty, FALSE, reason)
} else {
## Any choice of algorithm is permitted
algorithm <- match.arg(algorithm)
nonempty <- isTRUE(nonempty)
}
#' validate 'kappa' and 'mu'
km <- validate.kappa.mu(kappa, mu, kappamax, mumax,
win, scale, ...,
context="In rMatClust")
kappamax <- km[["kappamax"]]
mumax <- km[["mumax"]]
## conditional simulation
if(conditioning) {
mod <- clusterprocess("MatClust", mu=mu, kappa=kappa, scale=scale)
result <- CondSimCox(mod, nsim=nsim, ...,
nonempty=nonempty, algorithm=algorithm,
win=win, n.cond=n.cond, w.cond=w.cond,
saveparents=saveparents,
saveLambda=saveLambda, LambdaOnly=LambdaOnly,
drop=drop)
return(result)
}
## ------- Unconditional simulation ------------------
## detect trivial case where patterns are empty
if(kappamax == 0 || mumax == 0) {
result <- emptyNeyScot(win, nsim,
saveLambda, saveparents, LambdaOnly, ...)
return(simulationresult(result, nsim=nsim, drop=drop))
}
#' determine algorithm
do.parents <- saveparents || doLambda || !is.numeric(kappa)
do.hybrid <- (algorithm == "BKBC") && nonempty
if(do.hybrid) {
## ........ Fast algorithm (BKBC) .................................
## run BKBC algorithm for stationary model
result <- rMatClustHom(kappamax, mumax, scale, W=win, ...,
nsim=nsim, drop=FALSE,
saveparents=do.parents)
## thin
if(!is.numeric(kappa))
result <- solapply(result, thinParents,
P=kappa, Pmax=kappamax)
if(!is.numeric(mu))
result <- solapply(result, rthin,
P=mu, Pmax=mumax,
na.zero=TRUE, fatal=FALSE)
} else {
## .......... Slower algorithm ('naive') ..........................
## trap case of large clusters, close to Poisson
if(is.numeric(kappa) && 1/(pi * kappa * scale^2) < poisthresh) {
if(is.function(mu)) mu <- as.im(mu, W=win, ...)
kapmu <- kappa * mu
result <- rpoispp(kapmu, win=win, nsim=nsim, drop=drop, warnwin=FALSE)
result <- fakeNeyScot(result, kapmu, win,
saveLambda, saveparents, LambdaOnly)
return(result)
}
result <- rNeymanScott(kappa=kappa,
expand=scale,
rcluster=list(mu, rundisk),
win=win,
radius=scale, # formal argument of 'rundisk'
nsim=nsim, drop=FALSE,
nonempty=nonempty,
saveparents = do.parents,
kappamax=kappamax, mumax=mumax)
}
if(doLambda){
B <- grow.rectangle(Frame(win), scale)
for(i in 1:nsim) {
parents <- attr(result[[i]], "parents")
parents <- as.ppp(parents, W=B, check=FALSE)
Lambda <- clusterfield("MatClust", parents, scale=scale, mu=mu, ...)
Lambda <- Lambda[win, drop=FALSE]
if(LambdaOnly) {
#' save only the intensity
result[[i]] <- Lambda
if(saveparents) attr(result[[i]], "parents") <- parents
} else {
#' usual case - save intensity as attribute
attr(result[[i]], "Lambda") <- Lambda
}
}
}
return(simulationresult(result, nsim, drop))
}
rMatClust
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.