identifyClusters: Identify cell clusters

Description Usage Arguments

View source: R/scAI_model.R

Description

Identify cell clusters

Usage

1
2
3
4
identifyClusters(object, resolution = 1,
  partition.type = "RBConfigurationVertexPartition", seed.use = 42L,
  n.iter = 10L, initial.membership = NULL, weights = NULL,
  node.sizes = NULL, K = NULL)

Arguments

object

scAI object

resolution

A parameter controlling the coarseness of the clusters

partition.type

Type of partition to use. Defaults to RBConfigurationVertexPartition. Options include: ModularityVertexPartition, RBERVertexPartition, CPMVertexPartition, MutableVertexPartition, SignificanceVertexPartition, SurpriseVertexPartition (see the Leiden python module documentation for more details)

seed.use

set seed

n.iter

number of iteration

initial.membership

arameters to pass to the Python leidenalg function defaults initial_membership=None

weights

defaults weights=None

node.sizes

Parameters to pass to the Python leidenalg function

K

Number of clusters if performing hierarchical clustering of the consensus matrix


sqjin/scAI documentation built on Nov. 19, 2020, 4:04 p.m.