ntrain_seq <- c(200, 400, 1000)
base_seq <- c("lda", "knn", "logistic", "svm", "tree")
ex_seq <- 1:4
all_para <- expand.grid(ntrain_seq, 1:6, ex_seq)
md_name <- c("lda","knn","logistic","svm","tree","super",
"lda_it","knn_it","logistic_it","svm_it","tree_it","super_it")
md_name_basic <- c("lda","knn","logistic","svm","tree","rf","dnn")
error_mat_test <- matrix(0, 12, 300)
rownames(error_mat_test) <- md_name
error_mat_train <- matrix(0, 12, 300)
rownames(error_mat_train) <- md_name
error_mat_basic_test <- matrix(0,7,1800)
rownames(error_mat_basic_test) <- md_name_basic
error_mat_basic_train <- matrix(0,7,1800)
rownames(error_mat_basic_train) <- md_name_basic
feature <- array(0,c(12,400,3))
flag = as.numeric(Sys.getenv('SLURM_ARRAY_TASK_ID'))
setwd(paste0("/scratch/fb2234/Simulation",flag,"-result","/"))
for(i in 1:1800){
cat("(counting error)starts = ",i,'\n')
set_id <- floor((i-1)/100)+1
para <- all_para[set_id, ]
ntrain <- as.numeric(para[1])
if(ntrain == 200){
pos <- 1
}else if(ntrain == 400){pos <- 2}else{pos <- 3}
base <- base_seq[as.numeric(para[2])]
if(is.na(base)){base = base_seq}
# ex <- as.numeric(para[3])
base_name <- ifelse(length(base) == 1,base,"super")
file_name <- paste0(base_name,ntrain,"_",i-(set_id-1)*100,".RData")
load(file_name)
idx <- grep(base_name,md_name)
error_mat_test[idx[1],i-(set_id-1)*100 + (pos-1)*100] = test.error
error_mat_test[idx[2],i-(set_id-1)*100 + (pos-1)*100] = test.error.it
error_mat_train[idx[1],i-(set_id-1)*100 + (pos-1)*100] = train.error
error_mat_train[idx[2],i-(set_id-1)*100 + (pos-1)*100] = train.error.it
error_mat_basic_test[1,i] = test.error.lda
error_mat_basic_test[2,i] = test.error.knn
error_mat_basic_test[3,i] = test.error.logistic
error_mat_basic_test[4,i] = test.error.svm
error_mat_basic_test[5,i] = test.error.tree
error_mat_basic_test[6,i] = test.error.rf
error_mat_basic_test[7,i] = test.error.dnn
error_mat_basic_train[1,i] = train.error.lda
error_mat_basic_train[2,i] = train.error.knn
error_mat_basic_train[3,i] = train.error.logistic
error_mat_basic_train[4,i] = train.error.svm
error_mat_basic_train[5,i] = train.error.tree
error_mat_basic_train[6,i] = train.error.rf
error_mat_basic_train[7,i] = train.error.dnn
for(j in 1:200){
s <- as.numeric(unlist(p1$subspace[j]))
feature[idx[1],s,pos] <- feature[idx[1],s,pos] + 1
s1 <- as.numeric(unlist(p1_it$subspace[j]))
feature[idx[2],s1,pos] <- feature[idx[2],s1,pos] + 1
}
}
count <- matrix(0,3,5)
colnames(count) <- base_seq
count_it <- matrix(0,3,5)
colnames(count_it) <- base_seq
for(i in 1:300){
cat("(counting base)starts = ",i,'\n')
set_id <- floor((i-1)/100)+1
num <- i-(set_id-1)*100
file_name <- paste0("super",ntrain_seq[set_id],"_",num,".RData")
load(file_name)
count[set_id,1] <- count[set_id,1] + ifelse(is.na(p1$rk$ranking.base["lda"]),0,
p1$rk$ranking.base["lda"])
count[set_id,2] <- count[set_id,2] + ifelse(is.na(p1$rk$ranking.base["knn"]),0,
p1$rk$ranking.base["knn"])
count[set_id,3] <- count[set_id,3] + ifelse(is.na(p1$rk$ranking.base["logistic"]),0,
p1$rk$ranking.base["logistic"])
count[set_id,4] <- count[set_id,4] + ifelse(is.na(p1$rk$ranking.base["svm"]),0,
p1$rk$ranking.base["svm"])
count[set_id,5] <- count[set_id,5] + ifelse(is.na(p1$rk$ranking.base["tree"]),0,
p1$rk$ranking.base["tree"])
count_it[set_id,1] <- count_it[set_id,1] + ifelse(is.na(p1_it$rk$ranking.base["lda"]),0,
p1_it$rk$ranking.base["lda"])
count_it[set_id,2] <- count_it[set_id,2] + ifelse(is.na(p1_it$rk$ranking.base["knn"]),0,
p1_it$rk$ranking.base["knn"])
count_it[set_id,3] <- count_it[set_id,3] + ifelse(is.na(p1_it$rk$ranking.base["logistic"]),0,
p1_it$rk$ranking.base["logistic"])
count_it[set_id,4] <- count_it[set_id,4] + ifelse(is.na(p1_it$rk$ranking.base["svm"]),0,
p1_it$rk$ranking.base["svm"])
count_it[set_id,5] <- count_it[set_id,5] + ifelse(is.na(p1_it$rk$ranking.base["tree"]),0,
p1_it$rk$ranking.base["tree"])
}
count <- count/100
count_it <- count_it/100
error_test_200 <- rowMeans(error_mat_test[,1:100])
var_test_200 <- apply(error_mat_test[,1:100],1,var)
error_test_400 <- rowMeans(error_mat_test[,101:200])
var_test_400 <- apply(error_mat_test[,101:200],1,var)
error_test_1000 <- rowMeans(error_mat_test[,201:300])
var_test_1000 <- apply(error_mat_test[,201:300],1,var)
error_train_200 <- rowMeans(error_mat_train[,1:100])
var_train_200 <- apply(error_mat_train[,1:100],1,var)
error_train_400 <- rowMeans(error_mat_train[,101:200])
var_train_400 <- apply(error_mat_train[,101:200],1,var)
error_train_1000 <- rowMeans(error_mat_train[,201:300])
var_train_1000 <- apply(error_mat_train[,201:300],1,var)
id_1 <- rep(seq(1:100),6) + sort(rep(seq(0,1500,300),100))
id_2 <- id_1 + 100
id_3 <- id_2 + 100
error_basic_test_200 <- rowMeans(error_mat_basic_test[,id_1],na.rm =T)
var_basic_test_200 <- apply(error_mat_basic_test[,id_1],1,var)
error_basic_test_400 <- rowMeans(error_mat_basic_test[,id_2],na.rm =T)
var_basic_test_400 <- apply(error_mat_basic_test[,id_2],1,var)
error_basic_test_1000 <- rowMeans(error_mat_basic_test[,id_3],na.rm =T)
var_basic_test_1000 <- apply(error_mat_basic_test[,id_3],1,var)
error_basic_train_200 <- rowMeans(error_mat_basic_train[,id_1],na.rm = T)
var_basic_train_200 <- apply(error_mat_basic_train[,id_1],1,var)
error_basic_train_400 <- rowMeans(error_mat_basic_train[,id_2],na.rm = T)
var_basic_train_400 <- apply(error_mat_basic_train[,id_2],1,var)
error_basic_train_1000 <- rowMeans(error_mat_basic_train[,id_3],na.rm = T)
var_basic_train_1000 <- apply(error_mat_basic_train[,id_3],1,var)
result_200 <- list(error_test = error_test_200,error_train = error_train_200,
error_basic_test = error_basic_test_200,
error_basic_train = error_basic_train_200,
var_test = var_test_200, var_train = var_train_200,
var_basic_test = var_basic_test_200,
var_basic_train = var_basic_train_200)
result_400 <- list(error_test = error_test_400,error_train = error_train_400,
error_basic_test = error_basic_test_400,
error_basic_train = error_basic_train_400,
var_test = var_test_400, var_train = var_train_400,
var_basic_test = var_basic_test_400,
var_basic_train = var_basic_train_400)
result_1000 <- list(error_test = error_test_1000,error_train = error_train_1000,
error_basic_test = error_basic_test_1000,
error_basic_train = error_basic_train_1000,
var_test = var_test_1000, var_train = var_train_1000,
var_basic_test = var_basic_test_1000,
var_basic_train = var_basic_train_1000)
setwd("/scratch/fb2234/Simulation-summary")
save(result_200,result_400,result_1000,feature,
count,count_it,file = paste0("summary",flag,".RData"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.