#' @title Risk History Module
#'
#' @description Module function to track the risk history of uninfected persons
#' for purpose of intervention targeting.
#'
#' @inheritParams aging_camplc
#'
#' @keywords module msm
#'
#' @export
#'
riskhist_msm <- function(dat, at) {
if (at < dat$param$riskh.start) {
return(dat)
}
## Attributes
uid <- dat$attr$uid
## Parameters
pri <- ceiling(dat$param$prep.risk.int)
## Edgelist, adds uai summation per partnership from act list
al <- dat$temp$al
uai <- as.numeric(by(al[, "uai"], al[, "pid"], sum))
el <- as.data.frame(cbind(dat$temp$el, uai))
# Remove concordant positive edges
el2 <- el[el$st2 == 0, ]
## Truncate riskh matrices
for (i in 1:length(dat$riskh)) {
nc <- ncol(dat$riskh[[i]])
if (pri < ncol(dat$riskh[[i]])) {
dat$riskh[[i]] <- dat$riskh[[i]][, (nc - pri + 1):nc]
}
if (pri > nc) {
nr <- nrow(dat$riskh[[i]])
dat$riskh[[i]] <- cbind(matrix(NA, ncol = (pri - nc), nrow = nr),
dat$riskh[[i]])
}
dat$riskh[[i]] <- dat$riskh[[i]][, -1]
dat$riskh[[i]] <- cbind(dat$riskh[[i]], rep(NA, nrow(dat$riskh[[i]])))
}
## Degree ##
n <- attributes(dat$el[[1]])$n
main.deg <- casl.deg <-asmm.deg <- inst.deg <- rep(0, n)
tab.main <- table(dat$el[[1]])
main.deg[as.numeric(names(tab.main))] <- as.vector(tab.main)
tab.casl <- table(dat$el[[2]])
casl.deg[as.numeric(names(tab.casl))] <- as.vector(tab.casl)
tab.asmm <- table(dat$el[[3]])
asmm.deg[as.numeric(names(tab.asmm))] <- as.vector(tab.asmm)
tab.inst <- table(dat$el[[4]])
inst.deg[as.numeric(names(tab.inst))] <- as.vector(tab.inst)
## Preconditions ##
# Any UAI
uai.any <- unique(c(el2$p1[el2$uai > 0],
el2$p2[el2$uai > 0]))
# Monogamous partnerships: 1-sided
tot.deg <- main.deg + casl.deg + asmm.deg + inst.deg
uai.mono1 <- intersect(which(tot.deg == 1), uai.any)
# Monogamous partnerships: 2-sided
mono.2s <- tot.deg[el2$p1] == 1 & tot.deg[el2$p2] == 1
ai.mono2 <- sort(unname(do.call("c", c(el2[mono.2s, 1:2]))))
uai.mono2 <- intersect(ai.mono2, uai.any)
# "Negative" partnerships
tneg <- unique(c(el2$p1[el2$st1 == 0], el2$p2[el2$st1 == 0]))
dx <- dat$attr$diag.status
fneg <- unique(c(el2$p1[which(dx[el2$p1] == 0)], el2$p2[which(dx[el2$p1] == 0)]))
all.neg <- c(tneg, fneg)
since.test <- at - dat$attr$last.neg.test
## Condition 1a: UAI in 2-sided monogamous "negative" partnership,
## partner not tested in past 3, 6 months
uai.mono2.neg <- intersect(uai.mono2, all.neg)
part.id2 <- c(el2[el2$p1 %in% uai.mono2.neg, 2], el2[el2$p2 %in% uai.mono2.neg, 1])
not.tested.3mo <- since.test[part.id2] > (90/dat$param$time.unit)
part.not.tested.3mo <- uai.mono2.neg[which(not.tested.3mo == TRUE)]
dat$riskh$uai.mono2.nt.3mo[, pri] <- 0
dat$riskh$uai.mono2.nt.3mo[part.not.tested.3mo, pri] <- 1
not.tested.6mo <- since.test[part.id2] > (180/dat$param$time.unit)
part.not.tested.6mo <- uai.mono2.neg[which(not.tested.6mo == TRUE)]
dat$riskh$uai.mono2.nt.6mo[, pri] <- 0
dat$riskh$uai.mono2.nt.6mo[part.not.tested.6mo, pri] <- 1
## Condition 1b: UAI in 1-sided "monogamous" "negative" partnership,
## partner not tested in past 3, 6 months
uai.mono1.neg <- intersect(uai.mono1, all.neg)
part.id1 <- c(el2[el2$p1 %in% uai.mono1.neg, 2], el2[el2$p2 %in% uai.mono1.neg, 1])
not.tested.3mo <- since.test[part.id1] > (90/dat$param$time.unit)
part.not.tested.3mo <- uai.mono1.neg[which(not.tested.3mo == TRUE)]
dat$riskh$uai.mono1.nt.3mo[, pri] <- 0
dat$riskh$uai.mono1.nt.3mo[part.not.tested.3mo, pri] <- 1
not.tested.6mo <- since.test[part.id1] > (180/dat$param$time.unit)
part.not.tested.6mo <- uai.mono1.neg[which(not.tested.6mo == TRUE)]
dat$riskh$uai.mono1.nt.6mo[, pri] <- 0
dat$riskh$uai.mono1.nt.6mo[part.not.tested.6mo, pri] <- 1
## Condition 2a: UAI in non-monogamous partnerships
el2.uai <- el2[el2$uai > 0, ]
vec <- c(el2.uai[, 1], el2.uai[, 2])
uai.nonmonog <- unique(vec[duplicated(vec)])
dat$riskh$uai.nonmonog[, pri] <- 0
dat$riskh$uai.nonmonog[uai.nonmonog, pri] <- 1
## Condition 2b: UAI in non-main partnerships
uai.nmain <- unique(c(el2$p1[el2$st1 == 0 & el2$uai > 0 & el2$ptype %in% 2:3],
el2$p2[el2$uai > 0 & el2$ptype %in% 2:3]))
dat$riskh$uai.nmain[, pri] <- 0
dat$riskh$uai.nmain[uai.nmain, pri] <- 1
## Condition 3a: AI within known serodiscordant partnerships
el2.cond3 <- el2[el2$st1 == 1 & el2$ptype %in% 1:2, ]
# Disclosure
discl.list <- dat$temp$discl.list
disclose.cdl <- discl.list[, 1] * 1e7 + discl.list[, 2]
delt.cdl <- uid[el2.cond3[, 1]] * 1e7 + uid[el2.cond3[, 2]]
discl <- (delt.cdl %in% disclose.cdl)
ai.sd.mc <- el2.cond3$p2[discl == TRUE]
dat$riskh$ai.sd.mc[, pri] <- 0
dat$riskh$ai.sd.mc[ai.sd.mc, pri] <- 1
## Condition 3b: UAI within known serodiscordant partnerships
uai.sd.mc <- el2.cond3$p2[discl == TRUE & el2.cond3$uai > 0]
dat$riskh$uai.sd.mc[, pri] <- 0
dat$riskh$uai.sd.mc[uai.sd.mc, pri] <- 1
return(dat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.