PCR <- NULL
for ( f in c( 'PCR_Array1.csv','PCR_Array2.csv','PCR_Array3.csv') ) {
PCR <- c(PCR, system.file(file.path(f),
package = "Rscexv") )
}
FACS = NULL
for ( f in c( 'Array1_Index_sort.csv', 'Index_sort_Array2.csv','Index_sort_Array3.csv') ) {
FACS <- c(FACS, system.file(file.path(f),
package = "Rscexv") )
}
## test read and normalize data
negContrGenes <- NULL
max.value=40
ref.genes=c("Actb", "Gapdh")
max.ct=25
max.control=0
norm.function='none'
negContrGenes=NULL
use_pass_fail = T
methods <- c("mean control genes","max expression","median expression","quantile")
InbuiltData <- Rscexv( PCR, FACS, use_pass_fail)
save(InbuiltData, file=file.path("..","..","data","InbuiltData.RData") )
## otherwise I should be able to use the inbuilt data - right?
context('createDataObj with FACS')
InbuiltData@outpath= tempdir()
data <- kick.expressed.negContr.samples(InbuiltData, negContrGenes )
data <- plug.999(data, max.value ) ## does nothing for pre-processed data
data <- filter.on.controls.no.inv(data,ref.genes,max.ct,max.control)
expect_that( c("NTC2.P0","NTC1.P0","NTC2.P1","NTC1.P1","NTC4.P2"," NTC3.P2"), equals(setdiff( InbuiltData@samples[,1], data@samples[,1]) ))
data.filtered <- sd.filter( data )
plot.histograms( data.filtered ) ## this is needed for the web tool
opath = file.path(data.filtered@outpath, 'preprocess')
for ( n in c( colnames(data.filtered@data), colnames(data.filtered@facs) ) ) {
expect_that( file.exists( file.path( opath, paste(n,'png',sep='.'))), is_true())
}
for ( i in methods ) {
t <- norm.PCR(data.filtered,i,max.cyc=max.value, ctrl=ref.genes )
## the original data is stored in the raw slot
expect_that(t@raw, equals(data.filtered@data))
expect_that( dim(t@data), equals(dim(data.filtered@data)))
}
data.filtered <- norm.PCR(data.filtered,norm.function,max.cyc=max.value, ctrl=ref.genes )
expect_that( dim(data.filtered@data), equals( c(282,95) ))
## test analysis no grouping
onwhat='Expression'
clusterby='MDS'
mds.type='PCA'
move.neg <- TRUE
plot.neg <- TRUE
beanplots = TRUE
plotsvg = 0
zscoredVioplot = 1
cmethod='ward.D'
LLEK='2'
ctype= 'hierarchical clust'
groups.n <- 5
context('analyse.data with FACS')
data <- analyse.data (
data.filtered,
groups.n=groups.n,
onwhat='Expression',
clusterby='MDS',
mds.type='PCA',
cmethod='ward.D',
LLEK='2',
ctype= 'hierarchical clust',
zscoredVioplot = zscoredVioplot,
move.neg = move.neg,
plot.neg=plot.neg,
beanplots=beanplots
)
expect_that(
names(data@usedObj),
equals( c("mds.proj","auto_clusters","clusters","hc","colors","quality_of_fit","for.plot"))
)
## check that all files have been created....
opath = data.filtered@outpath
for ( n in c( colnames(data@data), colnames(data@facs) ) ) {
try(expect_that( file.exists( file.path( opath, paste(n,'png',sep='.')) ), is_true()))
}
xls.files <- c( "2D_data_color.xls","2D_data.xls","correlation_matrix_groups.xls" , "gene_loadings.xls","mean_expression_per_groups.xls", "merged_data_Table.xls" )
for ( n in xls.files ) {
try(expect_that( file.exists( file.path( opath, n ) ), is_true()))
}
xls.files <- c("facs_color_groups_Heatmap.png","PCR_color_groups_Heatmap.png","facs_Heatmap.png","PCR_Heatmap.png")
for ( n in xls.files ) {
try(expect_that( file.exists( file.path( opath, n ) ), is_true()))
}
context('plotDensity')
plotDensity( data )
try(expect_that( file.exists( file.path( opath, 'densityWebGL', 'index.html' ) ), is_true()))
if ( ! file.exists(file.path("..","..","data","analyzed.RData") ) ){
save(data, file=file.path("..","..","data","analyzed.RData") )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.