Description Usage Arguments Value References Examples
Gelman and Rubin's diagnostic assesses the mix of multiple MCMC chain with different initial parameter values Values close to 1 indicate that the posterior simulation has sufficiently converged, while values above 1 indicate that additional samples may be necessary to ensure convergence. A general guideline suggests that values less than 1.05 are good, between 1.05 and 1.10 are ok, and above 1.10 have not converged well.
1 |
object |
an object of class |
burnin |
optional numeric parameter for the number of initial MCMC samples to omit from the summary |
... |
currently unused |
Numeric vector of Rhat statistics for each parameter
Gelman, A. and Rubin, D. (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7(4) 457-472.
Gelman, A., et. al. (2013) Bayesian Data Analysis. Chapman and Hall/CRC.
Gabry, Jonah and Mahr, Tristan (2019). bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # poisson regression example
set.seed(7363)
X <- cbind(1, matrix(rnorm(40), ncol=2))
betavals <- c(0.8, -0.5, 1.1)
lmu <- X %*% betavals
y <- sapply(exp(lmu), FUN = rpois, n=1)
f <- hmc(N = 1000,
theta.init = rep(0, 3),
epsilon = 0.01,
L = 10,
logPOSTERIOR = poisson_posterior,
glogPOSTERIOR = g_poisson_posterior,
varnames = paste0("beta", 0:2),
param = list(y=y, X=X),
parallel=FALSE, chains=2)
psrf(f, burnin=100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.