library(quantsel)
library(ggplot2)
library(dplyr)
library(tidyr)
#source("helpers.R")
#source("analysis.R")
### this script makes a 2 population grid,
### populates the entire thing,
### then four phenotypes,
### each determined by a single locus
### evolve through drift
### no selection, no plasticity
###
gapprop = 0
rland <- NULL
rland <- landscape.new.empty()
rland <- landscape.new.intparam(rland, h=2, s=2,np=0,totgen=20000,maxland=3e5)
rland <- landscape.new.switchparam(rland,mp=0)
rland <- landscape.new.floatparam(rland,s=0,seedscale=c(500,2000),
seedshape=c(1,300),seedmix=c(0.05),
pollenscale=c(40,100),pollenshape=c(1,10),
pollenmix=0.2 , asp=0.5)
S <- matrix(c(
0, 0,
0.8, 0.0
), byrow=T, nrow = 2)
R <- matrix(c(
0, 18,
0, 0
), byrow=T, nrow = 2)
M <- matrix(c(
0, 0,
0, 1
), byrow=T, nrow = 2)
rland <- landscape.new.local.demo(rland,S,R,M)
S <- matrix(0,ncol = (rland$intparam$habitats*rland$intparam$stages),
nrow = (rland$intparam$habitats*rland$intparam$stages))
R <- S
M <- S
locs=cbind(lft=c(1,20001),bot=c(1,1),rgt=c(20000,40000),top=c(20000,20000))
lfts=1
k=rep(2500,rland$intparam$habitat)
e=rep(gapprop,rland$intparam$habitat)
rland <- landscape.new.epoch(rland,S=S,R=R,M=M,
carry=k,
extinct=e,
leftx=locs[,1],
rightx=locs[,3],
boty=locs[,2],
topy=locs[,4],
maxland=c(min(locs[1]),min(locs[2]),max(locs[3]),max(locs[4])))
for (i in 1:4)
rland <- landscape.new.locus(rland,type=1,ploidy=2,mutationrate=0.00,transmission=0,numalleles=2)
expmat <- matrix(c( #4rows for 4 loci, 4 cols for 4 phenotypes
1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1
),byrow=T,ncol=4)
hsq <- c(1,1,1,1)
rland <- landscape.new.expression(rland,
expmat=expmat*0.5,
hsq=hsq) #0.5 -> 1 diploid locus per phen, up to 2 alelle additive doses
rland <- landscape.new.gpmap(rland,
## 4 cols 5 rows. Cols correspond to phenotype effects on fit components
##for each phenotype (0 is no effect, 4 phenotypes in this example)
##phenotypes are in C indexing so, add 1 to compare to pehnotypes above
matrix(c(0, 0, 0, 0, #short scale #no selection
0, 0, 0, 0, #long scale #no selection
0, 0, 0, 0, #long shape #no selection
0, 0, 0, 0, #mixture #phenotype 2 #no selection
0, 0, 0, 0, #not used #no selection
0, 0, 0, 0, #survive #no selection
0, 0, 0, 0, #reproduce #no selection
0, 0, 0, 0 #density tolerance #no selection
),
ncol=4,byrow=T)
)
rland <- landscape.new.plasticity(rland,
matrix(c(
1, 1, 1, 1,
1, 1, 1, 1
),nrow=2,ncol=4,byrow=T)) #two habitats, four phenotypes
rland <- landscape.new.phenohab(rland)
initpopsize <- 10
inits <- matrix(initpopsize,ncol=rland$intparam$habitats,nrow=2)
rland <- landscape.new.individuals(rland,c(inits))
if (FALSE)
{
rland$individuals[landscape.populations(rland)==pop1,c(10,11,12,13)]=1L
rland$individuals[landscape.populations(rland)==pop2,c(10,11,12,13)]=2L
rland$individuals[landscape.populations(rland)==pop1,c(14,15,16,17)]=2L
rland$individuals[landscape.populations(rland)==pop2,c(14,15,16,17)]=1L
}
#rland$individuals[,5] <- 4500+floor(rland$individuals[,5]/10)
###############################
phens=c(1,2,3,4) #represented as 0 in c++
gen=100
sumlst=list()[1:gen]
l <- landscape.simulate(rland,1)
for (i in 1:gen)
{
print(dim(l$individuals))
print(dim(l$individuals))
if (dim(l$individuals)[1]>0) l.old=l
l=landscape.simulate(l,1)
if ((i %% 1)==0)
{
par(mfrow=c(2,2))
for (phen in phens)
landscape.plot.phenotypes(l,phen)
par(mfrow=c(1,1))
}
print(i)
print(dim(l$individuals))
# print(landscape.allelefreq(l) )
print(colMeans(landscape.phenotypes.c(l)))
sumlst[[i]] <- list(phenosum=cbind(gen=i,data.frame(landscape.phenosummary(l))),
afreq=cbind(gen=i,landscape.allelefreq(l)))
sumlst[[i]]$gen=i
}
par(mfrow=c(1,1))
phenosumdf <- do.call(rbind,lapply(sumlst,function(x){x$phenosum}))
afreqdf <- do.call(rbind,lapply(sumlst,function(x){x$afreq}))
phenosumdf <- pivot_longer(phenosumdf,cols=ends_with(c("mean","sd"))) %>% mutate(variable=name) %>% select(-name)
save(file=paste0("testSimple_res.rda"),sumlst,phenosumdf,afreqdf)
print(
phenosumdf %>% filter(!grepl("sd",variable)) %>%
ggplot(aes(x=gen,y=value,color=variable))+
geom_point()+geom_smooth()+
facet_wrap(~pop)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.