####------------------- simulation testinfo -----------------------####
# devtools::load_all()
# library(doParallel)
library(doMPI)
library(MFCblockInfo)
####------------------- simulation design -------------------------####
# design.load.all <- readRDS("simulation/design_load_all_234.rds")
design.load.all <- readRDS("design_load_all_234.rds")
design.load.1 <- design.load.all[["3"]][["12"]]
design.load <- rbind(design.load.1, design.load.1, design.load.1, design.load.1)
factor.blocksize <- 3 # c(2,3,4)
factor.keying <- "12" # c("0","12","23")
factor.int <- "large" #c("small","large")
factor.load <- "acceptable" #c("good","acceptable")
factor.length <- "long" #c("short","long")
factor.algorithm <- c("opt","r2","loads","random")
#number of replications
R <- 500
design.sim <- expand.grid("blocksize"=factor.blocksize, "keying"=factor.keying, "length"=factor.length, "intercepts"=factor.int,
"loads"=factor.load, "rep"=1:R)
#first reduced design: only blocksize 3, 1/2 mixed comparisons
####-------------------- fixed conditions -------------------------####
#trait correlations (Big 5 from meta-analysis van der Linden et al.)
trait.cov <- matrix(c(1,-.36,-.17,-.36,-.43,
-.36,1,.43,.26,.29,
-.17,.43,1,.21,.20,
-.36,.26,.21,1,.43,
-.43,.29,.20,.43,1),
nrow=5,ncol=5)
int.range <- list("small"=c(-1,1), "large"=c(-2,2))
load.range <- list("good"=c(.65,.95), "acceptable"=c(.45,.95))
#create grid of traits if traits are not given
tr.levels <- c(-1,0,1)
tr.list <- vector("list", ncol(trait.cov))
for(tr in 1:length(tr.list)) tr.list[[tr]] <- tr.levels
traits.grid <- expand.grid(tr.list)
#reduce for testing
# traits.grid <- traits.grid[1:5,]
# traits.grid <- rbind(traits.grid, rep(0,5))
J <- 500 #Number of participants
####------------------ start simulation -------------------####
# cl <- makeCluster(4)
# registerDoParallel(cl)
cl <- startMPIcluster()
registerDoMPI(cl)
sinkWorkerOutput(paste0("worker_iter_opt.out"))
# define chunkSize so that each cluster worker gets a single task chunk
chunkSize <- ceiling(R/getDoParWorkers())
mpiopts <- list(chunkSize=chunkSize)
# res <- foreach(d=1:nrow(design.sim), .packages=c("mvtnorm","numDeriv","devtools"), .combine=rbind) %dopar% {
#
res <- foreach (d=1:nrow(design.sim), .combine=rbind, .verbose=T, .packages=c("mvtnorm","numDeriv","devtools","lpSolveAPI","MFCblockInfo"),
.inorder=F, .errorhandling="remove", .options.mpi=mpiopts) %dopar% {
set.seed(1204+d)
nb <- design.sim[d,"blocksize"]
K <- nrow(design.load)/nb
blocks <- create.block.ind(K, nb)
#specifications for lp model
#final test length
K.final <- 20
####------------------ simulate item parameters -------------------####
items <- sim.items(design.load=design.load, K=K, nb=nb,
load.range=load.range[[as.character(design.sim[d,"loads"])]],
int.range=int.range[[as.character(design.sim[d,"intercepts"])]])
####-------------------------------- traits and responses --------------------------####
traits <- rmvnorm(n=J, mean=rep(0,ncol(design.load)), sigma = trait.cov, method="chol")
responses <- sim.responses(traits, items, design.load, K, nb, return.index=F)
####------------------- T-optimality --------------------------------####
load.mat <- items$loads * design.load
gamma.true <- create.design.mat(K=K, nb=nb) %*% items$u.mean
infos <- calc.info.block(lhb.mplus, traits=as.matrix(traits.grid), int=gamma.true, loads=load.mat, uni=diag(items$uni),
K=K, nb=nb)
#trace for each block (and grid point)
info.trace <- do.call(rbind, lapply(infos, function(ip) apply(ip, 1, function(i) sum(diag(i)))))
#constraints on items per trait
traits.blocks <- create.traits.blocks(loads=design.load, which.blocks=1:K, nb=nb)
constraint.list <- list(lapply(1:ncol(design.load), function(f, tb) apply(tb, 1, function(rw) ifelse(f %in% rw, 1, 0)), tb=traits.blocks),
as.list(rep(K.final/ncol(design.load)*nb, ncol(design.load))))
####------------ MIP algorithm with T-optimality -----------------------####
results.opt <- select.optimal(info.sum=info.trace, traits.grid=traits.grid, K=K, K.final=K.final,
constraint.list=constraint.list)
if(results.opt$solved==0) { #should return 0 (optimal solution found)
#get decision variables
ind.opt <- results.opt$ind.opt
####---------------- block selection based on R^2 ----------------------####
#R^2 mean across persons and traits, weighted
a.all <- rowSums(info2se(infos, var.out=T), na.rm=T)
a.all <- a.all/a.all[which(rowSums(traits.grid==0)==ncol(traits.grid))]
means.r2 <- do.call(c, lapply(1:K, function(k,i) mean(rowMeans(calc.info.block.r2(i, wo.blocks=k))*a.all), i=infos))
ind.r2 <- order(means.r2, decreasing = T)[1:K.final]
####---------------- item selection based on loadings ------------------####
loads.blocks <- t(apply(blocks, 1, function(b, dl) colSums(dl[b,]), dl=load.mat))
means.loads <- rowMeans(abs(loads.blocks))
ind.loads <- order(means.loads, decreasing = T)[1:K.final]
####---------------- random item selection ------------------####
ind.rand <- sample(1:K, K.final)
####---------------- trait estimation and summary measures -------------####
ind.list <- list("opt"=ind.opt, "r2"=ind.r2, "loads"=ind.loads, "random"=ind.rand)
res.r <- NULL
for (a in factor.algorithm) {
blocks.ind <- c(t(blocks[ind.list[[as.character(a)]],]))
gamma.true <- create.design.mat(K=K.final, nb=nb) %*% items$u.mean[blocks.ind]
#estimate traits based on new questionnaire
estimates <- est.MAP(FUN=lhb.mplus, responses=responses$rankindices[,ind.list[[as.character(a)]]],
int=gamma.true, loads=load.mat[blocks.ind,], uni=diag(items$uni)[blocks.ind,blocks.ind],
perms=permute(1:nb), nb=nb,
m.prior=rep(0,ncol(design.load)), s.prior=trait.cov, SE=FALSE)
rec <- diag(cor(estimates$traits, traits))
RMSE <- colMeans((estimates$traits - traits)^2)
MAB <- colMeans(abs(estimates$traits - traits))
res.r <- rbind(res.r,
data.frame(design.sim[d,], "trait"=1:ncol(design.load), "algorithm"=a, rec, RMSE, MAB))
}
} else {
res.r <- data.frame(design.sim[d,], "trait"=1:ncol(design.load), "algorithm"="opt", rec=NA, RMSE=NA, MAB=NA)
}
saveRDS(res.r, file=paste0("results/results_simulation_opt_d",d,".rds"))
res.r
}
saveRDS(res, file="results_simulation_opt.rds")
# stopCluster(cl)
closeCluster(cl)
mpi.quit()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.