plot_corr_matrix: Visualise correlation matrix

View source: R/correlation-based_diagnostics.R

plot_corr_matrixR Documentation

Visualise correlation matrix

Description

recommended for heatmap-type visualisation of correlation matrix with <100 items. With >50 samples and ~10 replicate pairs distribution plots may be more informative.

Usage

plot_corr_matrix(corr_matrix, annotation = NULL,
  annotation_id_col = "FullRunName", factors_to_plot = NULL,
  cluster_rows = FALSE, cluster_cols = FALSE,
  heatmap_color = colorRampPalette(rev(brewer.pal(n = 7, name =
  "RdYlBu")))(100), color_list = NULL, filename = NULL, width = 7,
  height = 7, units = c("cm", "in", "mm"), plot_title = NULL, ...)

Arguments

corr_matrix

square correlation matrix

annotation

data frame with peptide_annotation for protein correlation heatmap or sample_annotation for sample correlation heatmap

annotation_id_col

feature_id_col for protein correlation heatmap or sample_id_col for sample correlation heatmap

factors_to_plot

vector of technical and biological covariates to be plotted in this diagnostic plot (assumed to be present in sample_annotation)

cluster_rows

boolean values determining if rows should be clustered or hclust object

cluster_cols

boolean values determining if columns should be clustered or hclust object

heatmap_color

vector of colors used in heatmap.

color_list

list, as returned by sample_annotation_to_colors, where each item contains a color vector for each factor to be mapped to the color.

filename

path where the results are saved. If null the object is returned to the active window; otherwise, the object is save into the file. Currently only pdf and png format is supported

width

option determining the output image width

height

option determining the output image width

units

units: 'cm', 'in' or 'mm'

plot_title

title of the plot (e.g., processing step + representation level (fragments, transitions, proteins) + purpose (meanplot/corrplot etc))

...

parameters for the pheatmap visualisation, for details see examples and help to corresponding functions

Details

Plot correlation of selected samples or peptides

Value

pheatmap object

See Also

pheatmap, plot_sample_corr_distribution, plot_peptide_corr_distribution

Examples

peptides <- c("10231_QDVDVWLWQQEGSSK_2", "10768_RLESELDGLR_2")
data_matrix_sub = example_proteome_matrix[peptides,]
corr_matrix = cor(t(data_matrix_sub), use = 'complete.obs')
corr_matrix_plot <- plot_corr_matrix(corr_matrix)


symbioticMe/proBatch documentation built on April 9, 2023, 11:59 a.m.