knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(dhomer) library(tigris) library(sf) library(tmap) library(tmaptools)
The datastes are not saved as spatial objects, rather with latitude and longitude columns, so we must first convert all of the point data into spatial objects with st_as_sf
sc_tracts <- tracts(state = 45) data("superfund") data("brownfields") data("tri") data("contaminants") data("free_clinics") data("health_facilities") data("hrsa") data("markets") data("libraries") data("markets") data("pharmacies") data("public_schools") data("recreation") data("transit_terminals") superfund_map <- superfund %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) brownfields_map <- brownfields %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) tri_map <- tri %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) contaminants_map <- contaminants %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) clinics_map <- free_clinics %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) facilities_map <- health_facilities %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) hrsa_map <- hrsa %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) libraries_map <- libraries %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) markets_map <- markets %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) pharmacies_map <- pharmacies %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) schools_map <- public_schools %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) rec_map <- recreation %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts)) transit_map <- transit_terminals %>% st_as_sf(coords = c('lon', 'lat'), crs = st_crs(sc_tracts))
plot1 <- tm_shape(sc_tracts) + tm_polygons(col = '#CCCCCC') + tm_layout(main.title = 'Environmental Hazards', main.title.position = c('center','top')) + # tm_shape(tri_map) + # tm_dots(size = 0.1, col = '#700074') + tm_shape(brownfields_map) + tm_dots(size = 0.1, col = '#E62B8B') + # tm_shape(superfund_map) + # tm_dots(size = 0.1, col = '#4AB9C2') + # tm_shape(contaminants_map) + # tm_dots(size = 0.1, col = '#6BAB34') + tm_add_legend(title = 'Point Labels', type = 'symbol', labels = c('Toxic Release Inventory Sites', 'Brownfields', 'Superfund Sites','EPA Contaminants of Concern'), col = c('#700074','#E62B8B','#4AB9C2','#6BAB34')) plot1
plot2 <- tm_shape(sc_tracts) + tm_polygons(col = '#CCCCCC') + tm_layout(main.title = 'Healthcare Resources', main.title.position = c('center','top')) + tm_shape(facilities_map) + tm_dots(size = 0.1, col = '#E41A1C') + tm_shape(pharmacies_map) + tm_dots(size = 0.1, col = '#1F9E89FF') + tm_shape(hrsa_map) + tm_dots(size = 0.1, col = '#FFD92F') + tm_shape(clinics_map) + tm_dots(size = 0.1, col = '#0D0887FF') + tm_add_legend(title = 'Point Labels', type = 'symbol', labels = c('Pharmacies', 'Licensed Health Facilities', 'HRSA Health Facilities','Free Clinics'), col = c('#E41A1C','#1F9E89FF','#FFD92F','#0D0887FF')) plot2
plot3 <- tm_shape(sc_tracts) + tm_polygons(col = '#CCCCCC') + tm_layout(main.title = 'Social, Education, & Community Resources', main.title.position = c('center','top')) + tm_shape(rec_map) + tm_dots(size = 0.1, col = '#E75A47') + tm_shape(markets_map) + tm_dots(size = 0.1, col = '#00336FFF') + tm_shape(schools_map) + tm_dots(size = 0.1, col = '#33A02C') + tm_shape(libraries_map) + tm_dots(size = 0.1, col = '#FFD92F') + tm_shape(transit_map) + tm_dots(size = 0.1, col = '#8C0C25') + tm_add_legend(title = 'Point Labels', type = 'symbol', labels = c('Recreation Areas', "Farmer's and Roadside Markets", 'Public Schools','Public Libraries','Intermodal Passenger Transit Terminals'), col = c('#E75A47','#00336FFF','#33A02C','#FFD92F','#8C0C25')) plot3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.