R/mixed.dens.R

Defines functions predict.cmdSuperLearner .make.doubly.stochastic cmdSuperLearner.onebin .find.bin cmdSuperLearner

Documented in cmdSuperLearner cmdSuperLearner.onebin predict.cmdSuperLearner

#' SuperLearner-based estimation of (c)onditional (m)ixed continuous-discrete (d)ensity function
#'
#' This function estimates a standardized conditional density function that may have both continuous and discrete components. Let \code{A} be a univariate exposure and \code{W} be a p-dimensional vector of covariates. Then this function estimates p(a | w) / p(a) at points  of absolute continuity of the marginal distribution of \code{A}, where p(a | w) = (d/da)P(A <= a | W = w) is the conditional density of \code{A} given \code{W = w} evaluated at a and p(a) = (d/da) P(A <= a) is the marginal density of \code{A}, and at discrete points of the marginal distribution of \code{A}, this function estimates P(A = a | W = w)/P(A = a).
#'
#' The basic idea is to first transform A by its empirical CDF to obtain U = F_n(A), because the conditional density or  mass function of F(A) equals the standardized conditional density/mass of A for F(a) = P(A <= a). Then, the support [0,1] of U is discretized into \code{b} sets (which may be singleton sets) using the marginal distribution of U. Within each of these sets, the conditional probability that U falls in the set given \code{W} is estimated using the specified wrapper algorithms from the \code{\link[SuperLearner]{SuperLearner}} package. This procedure is repeated over a set of possible number of bins \code{b}, and optimal weights for all algorithms are found using negative log likelihood loss.
#'
#' @param A \code{n x 1} numeric vector of exposure values.
#' @param W \code{n x p} data.frame of covariate values to condition upon.
#' @param newA \code{m x 1} numeric vector of new exposure values at which to obtain predictions. Defaults to \code{A}.
#' @param newW \code{m x p} data.frame of new covariate values at which to obtain predictions. Defaults to \code{W}.
#' @param control Optional list of control parameters. See \code{\link{cmdSuperLearner.control}} for details.
#' @param cvControl Optional list of control parameters for cross-validation. See \code{\link{cmdSuperLearner.cvControl}} for details.
#' @return \code{cmdSuperLearner} returns a named list with the following elements:
#' \item{fits}{A list of fits for each of the number of bins specified in control$n.bins, as output by \link{cmdSuperLearner.onebin.}}
#' \item{cv.library.densities}{Cross-validated densities from every element of the library.}
#' \item{library.densities}{Densities predicted using the new data.}
#' \item{SL.densities}{Super learner densities predicted on the new data.}
#' \item{coef}{The coefficient of the meta-learner.}
#' \item{library.names}{Names of library algortihms.}
#' \item{a.ecdf}{Empirical CDF of the exposure.}
#' \item{control}{Control elements used in fitting.}
#' \item{cvControl}{Cross-validation controls used in fitting.}
#'
#' @examples
#' # Sample data
#' n <- 1000
#' W <- data.frame(W1 = runif(n))
#' Z <- rbinom(n, size = 1, prob = 1/(1 + exp(2-W$W1)))
#' A <- (1-Z) * rnorm(n, mean = W$W1, sd = abs(1 + W$W1))
#' fit <- cmdSuperLearner(A, W, control=list(SL.library = c("SL.mean", "SL.glm", "SL.gam", "SL.earth"), verbose=TRUE, n.bins = c(2:10)))


cmdSuperLearner <- function(A, W, newA = A, newW = W, control = list(), cvControl = list()) {
  n <- nrow(W)

  call <- match.call(expand.dots = TRUE)
  control <- do.call("cmdSuperLearner.control", control)
  cvControl <- do.call("cmdSuperLearner.CV.control", cvControl)

  validRows <- cmdCVFolds(n = n, cvControl = cvControl)

  library(Rsolnp)

  fits <- NULL
  for(b in control$n.bins) {
    if(control$verbose) cat("\nEstimating models with", b, "bins... ")
    fits[[paste0('dens.fit.', b, 'bins')]] <- cmdSuperLearner.onebin(A, W, newA=newA, newW = newW, b=b, SL.library = control$SL.library, verbose = control$verbose, validRows = validRows, saveFitLibrary = control$saveFitLibrary)
  }

  algs.per.bin <- ncol(fits[[1]]$cv.library.densities)
  n.algs <- length(control$n.bins) * algs.per.bin
  cv.library.densities <- matrix(NA, nrow=n, ncol=n.algs)
  library.densities <- matrix(NA, nrow=length(newA), ncol=n.algs)
  library.names <- NULL
  start.col <- 1
  for(b in control$n.bins) {
    end.col <- start.col + algs.per.bin - 1
    cv.library.densities[,start.col:end.col] <- fits[[paste0('dens.fit.', b, 'bins')]]$cv.library.densities
    library.densities[,start.col:end.col] <- fits[[paste0('dens.fit.', b, 'bins')]]$library.densities
    library.names <- c(library.names, fits[[paste0('dens.fit.', b, 'bins')]]$alg.names)
    start.col <- end.col + 1
  }

  if(control$verbose) cat("\nOptimizing model weights...\n")

  # Remove algs with errors in cv predictions
  errors.in.library <- apply(cv.library.densities, 2, function(col) any(is.na(col)))
  if(any(errors.in.library)) warning(paste0("Errors in the following candidate algorithms: ", library.names[which(errors.in.library)]))
  n.include <- sum(!errors.in.library)

  # Do SL log-likelihood optimization
  cv_risk <- function(beta) -mean(log(cv.library.densities[,!errors.in.library] %*% beta))
  capture.output(solnp_solution <- solnp(rep(1/n.include, n.include), cv_risk, eqfun=sum, eqB=1, ineqfun=function(beta) beta, ineqLB=rep(0,n.include), ineqUB=rep(1, n.include)))
  coef <- rep(0, n.algs)
  coef[!errors.in.library] <- solnp_solution$pars
  if(control$verbose) {
    cat("Top five learners by weight: \n")
    for(j in 1:5) {
      cat(library.names[order(coef, decreasing = TRUE)[j]], " (weight ", sort(coef, decreasing = TRUE)[j], ")\n", sep='')
    }
  }
  SL.density <- c(library.densities[,!errors.in.library,drop=FALSE] %*% solnp_solution$pars)

  return(list(fits = fits, cv.library.densities = cv.library.densities, library.densities = library.densities, SL.densities = SL.density, coef = coef, library.names = library.names, a.ecdf = ecdf(A), control=control, cvControl = cvControl))


}


#' Control parameters for the conditional mixed density Super Learner
#'
#' This function initiates control parameters for the \code{\link{cmdSuperLearner}} function.
#'
#' @param n.bins Vector of integers >= 2 indicating the number of bins to use for discretization. Defaults to \code{2:floor(n/100)}.
#' @param SL.library Library to use for bin-specific SuperLearners. Defaults to \code{c("SL.mean", "SL.glm", "SL.gam", "SL.earth")}.
#' @param saveFitLibrary Logical indicating whether to save the fit library on the full data. Defaults to \code{TRUE}. If \code{FALSE}, cannot obtain predicted values on new data later.
#' @param verbose Logical indicating whether to report progress of the estimation process.
#' @return Returns a named list with control parameters.

cmdSuperLearner.control <- function (n.bins = 2:floor(length(unique(A))/50), SL.library = c("SL.mean", "SL.glm", "SL.gam", "SL.earth"), saveFitLibrary = TRUE, verbose = FALSE) {
  list(n.bins = n.bins, SL.library = SL.library, saveFitLibrary = saveFitLibrary, verbose = verbose)
}

#' Control parameters for the cross validation steps in conditional mixed density Super Learner
#'
#' This function initiates control parameters for the cross-validation in \code{\link{cmdSuperLearner}} function.
#'
#' @param V Number of cross-validation folds. Defaults to 10.
#' @param shuffle Logical indicating whether to shuffle the indices, or to simply assign sequentially. Defaults to \code{TRUE}. Should almost always be set to \code{TRUE} unless it is explicitly desired to assign sequentially.
#' @param validRows Optional custom list of indices for validation folds.
#' @return Returns a list of length \code{V} with validation indices for each of the folds.

cmdSuperLearner.CV.control <- function (V = 10L, shuffle = TRUE, validRows = NULL) {
  V <- as.integer(V)
  if (!is.null(validRows)) {
    if (!is.list(validRows)) {
      stop("validRows must be a list of length V containing the row numbers for the corresponding validation set")
    }
    if (!identical(V, length(validRows))) {
      stop("V and length(validRows) must be identical")
    }
  }
  list(V = V, shuffle = shuffle, validRows = validRows)
}

#' Create cross-validation folds
#'
#' This function generates cross-validation folds.
#'
#' @param n Number of observations.
#' @param cvControl Named list generated by \link{cmdSuperLearner.CV.control}.

cmdCVFolds <- function (n, cvControl) {
  if (!is.null(cvControl$validRows)) return(cvControl$validRows)
  stratifyCV <- cvControl$stratifyCV
  shuffle <- cvControl$shuffle
  V <- cvControl$V
  if (shuffle) {
     validRows <- split(sample(1:n), rep(1:V, length = n))
  }
  else {
    validRows <- split(1:n, rep(1:V, length = n))
  }

  return(validRows)
}


.find.bin <- function(x, bins) {
  mat <- t(sapply(x-1e-10, function(x0) {
    unlist(lapply(bins, function(bin) {
      interval_contains_element(bin, x0)
    }))
  }))
  if(any(rowSums(mat) > 1)) stop("Overlapping bins")
  if(any(rowSums(mat) == 0)) stop("Element outside all bins")

  apply(mat, 1, function(row) which(row))
}

#' cmdSuperLearner for a specific number of bins
#'
#' This function estimates the conditional mixed density using a given number of bins \code{b}.
#'
#' @param A \code{n x 1} numeric vector of exposure values.
#' @param W \code{n x p} data.frame of covariate values to condition upon.
#' @param newA \code{m x 1} numeric vector of new exposure values at which to obtain predictions. Defaults to \code{A}.
#' @param newW \code{m x p} data.frame of new covariate values at which to obtain predictions. Defaults to \code{W}.
#' @param b Integer number of bins >= 2.
#' @param SL.library Library to use for bin-specific probabilities.
#' @param verbose Logical indicating whether to print progress reports to the command line.
#' @param validRows List of rows in each CV fold.
#' @return Returns a named list with the following elements:
#' \item{bins}{List of length \code{b} containing the sets used for each bin.}
#' \item{bin.fits}{List of length \code{b} containing the estimated SuperLearner objects for each bin.}
#' \item{a.ecdf}{Empirical CDF of the exposure.}
#' \item{SL.bin.probs}{SuperLearner conditional probabilities of being in each bin for the new data.}
#' \item{SL.densities}{SuperLearner conditional standardized mixed density correspondint to each bin for the new data.}
#' \item{cv.library.densities}{Cross-validated library conditional standardized mixed density corresponding to each bin.}
#' \item{library.densities}{Library conditional standardized mixed density corresponding to each bin fit on the new data.}
#' \item{alg.names}{Algorithm names.}
#' @examples
#' # Define parameters
#' n <- 300
#' W <- data.frame(matrix(rnorm(3 * n), ncol = 3))
#' Z <- rbinom(n, size = 1, prob = 1/(1 + exp(2-W[,1] + W[,2])))
#' A <- (1-Z) * rnorm(n, mean = W[,2] - W[,3], sd = abs(1 + W[,1]))
#' validRows <- cmdCVFolds(n = n, cvControl = list(V = 10, shuffle=TRUE, validRows = NULL))
#' bin.fit <- cmdSuperLearner.onebin(A, W, b = 2, SL.library = c("SL.mean", "SL.glm", "SL.gam", "SL.earth"), verbose=TRUE, validRows = validRows)

cmdSuperLearner.onebin <- function(A, W, newA=A, newW=W, b, SL.library, verbose, validRows, saveFitLibrary) {
  n.folds <- length(validRows)
  a.ecdf <- ecdf(A)
  U <- a.ecdf(A)
  n <- nrow(W)
  m <- nrow(newW)
  W <- as.data.frame(W)
  newW <- as.data.frame(newW)
  U <- as.numeric(U)
  library(Rsolnp)
  library(SuperLearner)
  library(sets)
  tab <- table(U)
  un.U <- as.numeric(names(tab))
  un.U.frac <- as.numeric(tab) / length(U)
  if(b <= 1) stop("Number of bins must be > 1")
  if(length(un.U) < b) stop("Number of bins must not be larger than number of unique values of U.")
  if(length(un.U) == b) {
    mass.pts <- un.U
    bins <- data.frame(bin = 1:b, lower = un.U, upper = un.U, bin.length = 0, mass.pt = TRUE)
  }
  if(length(un.U) > b) {
    if(any(un.U.frac >= 1/b)) {
      mass.pts <- un.U[un.U.frac >= 1/b]
      n.mass.pts <- length(mass.pts)
      mass.pt.lowers <- round(sapply(mass.pts, function(x) max(c(U[x - U > 1/(10*n)], 0))), 7)
      mass.intervals <- lapply(1:n.mass.pts, function(j) {
        interval(mass.pt.lowers[j], mass.pts[j], bounds="(]")
      })
      cont.intervals <- data.frame(lower=c(0,mass.pts), upper=c(mass.pt.lowers, 1))
      cont.intervals$length <- cont.intervals$upper - cont.intervals$lower
      cont.intervals <- subset(cont.intervals, length > 0)
    }
    else {
      mass.pts <- NULL
      n.mass.pts <- 0
      mass.intervals <- NULL
      cont.intervals <- data.frame(lower=0, upper=1, length=1)
    }

    n.cont.bins <- b - n.mass.pts
    if(n.cont.bins > 0) {
      delta <- sum(cont.intervals$length) / n.cont.bins
      delta <- round(delta, digits=ceiling(log10(n)) + 2)
      cont.bin.endpts <- matrix(NA, nrow=n.cont.bins, ncol=2)

      for(j in 1:n.cont.bins) {
        if(j == 1) start <- cont.intervals$lower[1]
        else start <- end
        start.interval <- max(which(cont.intervals$lower <= start + 1e-6 & start <= cont.intervals$upper + 1e-6))
        if(start == cont.intervals$upper[start.interval]) {
          start.interval <- start.interval + 1
          start <- cont.intervals$lower[start.interval]
        }
        end <- start + delta
        end.interval <- start.interval
        if(!(all.equal(end, cont.intervals$upper[end.interval]) == TRUE) && end > cont.intervals$upper[end.interval]) {
          length.used <- cont.intervals$upper[end.interval] - start
          length.left <- delta - length.used
          end.interval <- end.interval + 1
          end <- cont.intervals$lower[end.interval] + length.left
        }
        while(!(all.equal(end, cont.intervals$upper[end.interval]) == TRUE) && end > cont.intervals$upper[end.interval]) {
          length.used <- length.used + cont.intervals$upper[end.interval] - cont.intervals$lower[end.interval]
          length.left <- delta - length.used
          end.interval <- end.interval + 1
          end <- cont.intervals$lower[end.interval] + length.left
        }
        end <- round(end, digits=ceiling(log10(n)) + 3)
        if(j == n.cont.bins) end <- cont.intervals$upper[nrow(cont.intervals)]
        cont.bin.endpts[j,] <- c(start, end)
      }

      cont.intervals <- lapply(1:n.cont.bins, function(j) {
        if(j == 1) int <- interval(cont.bin.endpts[j, 1], cont.bin.endpts[j, 2], bounds="[]")
        else int <- interval(cont.bin.endpts[j, 1], cont.bin.endpts[j, 2], bounds="(]")
        if(n.mass.pts > 0) {
          for(k in 1:n.mass.pts) {
            int <- interval_complement(mass.intervals[[k]], int)
          }
        }
        return(int)
      })
    } else {
      cont.intervals <- list()
    }

    bins <- c(mass.intervals, cont.intervals)
  }

  bin.sizes <- unlist(lapply(bins, interval_measure))

  disc.U <- .find.bin(U, bins)

  U.new <- a.ecdf(newA)
  disc.U.new <- .find.bin(U.new, bins)

  bin.fracs <- sapply(1:b, function(j) mean(disc.U == j))

  bin.fits <- NULL
  bin.probs <- matrix(NA, nrow=m, ncol=b)
  for(bin in 1:b) {
    if(verbose) cat("bin", bin, "... ")
    capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, newX=newW, family='binomial', SL.library = SL.library, method='method.NNloglik', control = list(saveFitLibrary=saveFitLibrary), cvControl = list(V=n.folds, validRows=validRows)), silent=TRUE))
    if(class(bin.fit) == "try-error") {
      capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, newX=newW, family='binomial', SL.library = SL.library, method='method.NNLS',control = list(saveFitLibrary=saveFitLibrary), cvControl = list(V=n.folds, validRows=validRows)), silent=TRUE))
    }
    if(class(bin.fit) == "try-error") {
      capture.output(bin.fit <- try(SuperLearner(Y=as.numeric(disc.U==bin), X=W, newX=newW, family='binomial', SL.library = SL.library, method='method.NNLS2', control = list(saveFitLibrary=saveFitLibrary), cvControl = list(V=n.folds, validRows=validRows)), silent=TRUE))
    }
    if(class(bin.fit) != "try-error") {
      bin.fits[[paste0("bin", bin, ".SL")]] <- bin.fit
      bin.probs[,bin] <- bin.fit$SL.predict
    } else {
      bin.mean <- mean(as.numeric(disc.U==bin))
      if(class(SL.library) == "character") n.algs <- length(SL.library)
      else n.algs <- sum(unlist(lapply(SL.library, function(sl) length(sl) - 1)))
      bin.fits[[paste0("bin", bin, ".SL")]] <- list(Z = matrix(bin.mean, nrow=n,ncol=n.algs), library.predict = matrix(bin.mean, nrow=m,ncol=n.algs))
      bin.probs[,bin] <- bin.mean
    }
  }



  #SL.bin.probs <- .make.doubly.stochastic(bin.probs, row.sums = rep(1, m), col.sums = bin.fracs * m)
  SL.bin.probs <- bin.probs / rowSums(bin.probs)

  SL.densities <- SL.bin.probs[cbind(1:m, disc.U.new)] / bin.sizes[disc.U.new]

  n.alg <- ncol(bin.fits[["bin1.SL"]]$Z)
  cv.library.densities <-  matrix(NA, nrow=n, ncol=n.alg)
  library.densities <- matrix(NA, nrow=m, ncol=n.alg)
  for (j in 1:n.alg) {
    cv.bin.probs <- matrix(NA, nrow = n, ncol = b)
    library.bin.probs <- matrix(NA, nrow = m, ncol = b)
    for (bin in 1:b) {
      cv.bin.probs[, bin] <- bin.fits[[paste0("bin", bin, ".SL")]]$Z[,j]
      library.bin.probs[, bin] <- bin.fits[[paste0("bin", bin, ".SL")]]$library.predict[,j]
    }
    if(any(is.na(cv.bin.probs)) | any(colSums(cv.bin.probs) == 0) | any(rowSums(cv.bin.probs) == 0)) {
      cv.library.densities[,j] <- rep(NA, n)
    } else {
      #cv.bin.probs <- .make.doubly.stochastic(cv.bin.probs, row.sums = rep(1, n), col.sums = bin.fracs * n)
      cv.bin.probs <- cv.bin.probs / rowSums(cv.bin.probs)
      cv.library.densities[,j] <- cv.bin.probs[cbind(1:n, disc.U)] / bin.sizes[disc.U]
    }

    if(any(is.na(library.bin.probs)) | any(colSums(library.bin.probs) == 0) | any(rowSums(library.bin.probs) == 0)) {
      library.densities[,j] <- rep(NA, m)
    } else {
      #library.bin.probs <- .make.doubly.stochastic(library.bin.probs, row.sums = rep(1, n), col.sums = bin.fracs * n)
      library.bin.probs <- library.bin.probs / rowSums(library.bin.probs)
      library.densities[,j] <- library.bin.probs[cbind(1:m, disc.U.new)] / bin.sizes[disc.U.new]
    }

  }

  alg.names <- paste0(bin.fits[["bin1.SL"]]$libraryNames, "_", b, "bins")

  ret <- list(bins = bins,  a.ecdf = a.ecdf, SL.bin.probs = SL.bin.probs, SL.densities = SL.densities, cv.library.densities = cv.library.densities, library.densities = library.densities, alg.names = alg.names)
  if(saveFitLibrary) ret$bin.fits <- bin.fits
  return(ret)

}


.make.doubly.stochastic <- function(mat, row.sums, col.sums, tol = .001) {
  ret <- mat
  while(sum(abs(rowSums(ret) - row.sums)) > tol | sum(abs(colSums(ret) - col.sums)) > tol) {
    ret <- ret / (rowSums(ret) / row.sums)
    ret <- t( t(ret) / (colSums(ret) / col.sums))
  }
  return(ret)
}

#' Prediction method for cmdSuperLearner
#'
#' This function predicts standardized conditional density function values given a fitted model and new data,
#'
#' @param fit Fitted \code{\link{cmdSuperLearner}} object. Must have been run with \code{control$saveFitLibrary = TRUE}.
#' @param newA \code{m x 1} numeric vector of new exposure values.
#' @param newW \code{m x p} data.frame of new covariate values.
#' @param threshold Minimum coefficient value for which library algorithms should be included in the prediction.
#' @return \code{cmdSuperLearner} returns a named list with the following elements:
#' \item{fit.times}{The time points at which the counterfactual survival curves (and contrasts) were fit.}
#'
#' @examples
#' # Sample data
#' set.seed(220)
#' n <- 1000
#' W <- data.frame(W1 = runif(n))
#' Z <- rbinom(n, size = 1, prob = 1/(1 + exp(2-W$W1)))
#' A <- (1-Z) * rnorm(n, mean = W$W1, sd = abs(1 + W$W1))
#' fit <- cmdSuperLearner(A, W, control=list(SL.library = c("SL.mean", "SL.glm", "SL.gam", "SL.earth"), verbose=TRUE, n.bins = c(2:10)))
#' # Get predicted standardized "density" (really mass) at 0
#' pred <- predict.cmdSuperLearner(fit = fit, newA = rep(0, n), newW = W)
#' true.g <- 1 /(integrate(function(x) 1/(1 + exp(2-x)), 0, 1)$value * (1 + exp(2-W$W1)))
#' plot(true.g, pred)
#' abline(0,1, col='red')


predict.cmdSuperLearner <- function(fit, newA, newW, threshold = .001) {
  library(SuperLearner)
  newW <- as.data.frame(newW)
  new.U <- fit$a.ecdf(newA)
  trunc.coef <- fit$coef
  trunc.coef[trunc.coef < threshold] <- 0
  trunc.coef <- trunc.coef / sum(trunc.coef)
  nonzero <- which(trunc.coef > 0)
  lib.name.splits <- strsplit(fit$library.names, "_")
  lib.name.nbins <- unlist(lapply(lib.name.splits, function(l) as.numeric(strsplit(l[3], "bins")[[1]])))
  lib.name.alg <- unlist(lapply(lib.name.splits, function(l) paste0(l[1:2], collapse="_")))
  bins.to.fit <- unique(lib.name.nbins[nonzero])
  pred.densities <- matrix(NA, nrow=length(newA), ncol=length(fit$library.names))
  for(bin in bins.to.fit) {
    ind <- which(fit$control$n.bins == bin)
    new.bins <- .find.bin(new.U, bins = fit$fits[[ind]]$bins)
    bin.sizes <- unlist(lapply(fit$fits[[ind]]$bins, interval_measure))
    pred.probs <- matrix(NA, nrow = length(new.U), ncol = length(unique(lib.name.alg)))
    for(k in 1:length(fit$fits[[ind]]$bin.fits)) {
      if(any(new.bins == k)) {
        pred.probs[new.bins == k,] <- predict.SuperLearner(fit$fits[[ind]]$bin.fits[[k]], newdata = newW[new.bins == k,, drop=FALSE], onlySL = TRUE)$library.predict
      }
    }
    pred.probs <- pred.probs / rowSums(pred.probs)
    pred.densities[,which(lib.name.nbins == bin)] <- pred.probs / bin.sizes[new.bins]
  }
  c(pred.densities[,nonzero,drop=FALSE] %*% trunc.coef[nonzero])
}
tedwestling/ctsCausal documentation built on Dec. 7, 2022, 3:33 p.m.