View source: R/FUNCTION_predict_ffls_two_groups.R
predict_ffls_two_groups | R Documentation |
function to predict FFLs unique to one of two biological groups
predict_ffls_two_groups( mirna_expr_g1, mrna_expr_g1, mirna_expr_g2, mrna_expr_g2, ffl_type = c("miRNA", "TF"), candidate_ffls, first_row = 1, last_row = nrow(candidate_ffls), num_bootstrap_samples = 1000, num_permutations = 1000, p_value_adjust_method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "locfdr", "none"), seed = 12345, parallel = TRUE )
mirna_expr_g1 |
Group 1's miRNA expression data (dataframe: miRNAs x samples, see |
mrna_expr_g1 |
Group 1's mRNA expression data (dataframe: mRNAs x samples, see |
mirna_expr_g2 |
Group 2's miRNA expression data (dataframe: miRNAs x samples, see |
mrna_expr_g2 |
Group 2's miRNA expression data (dataframe: miRNAs x samples, see |
ffl_type |
FFL type (character: "miRNA" or "TF") |
candidate_ffls |
candidate FFLs (dataframe: candidate FFLs x 10, see |
first_row |
first row of candidate_ffls dataframe to include in analyses (integer: default = 1) |
last_row |
last row of candidate_ffls dataframe to include in analyses (integer: default = nrow(candidate_ffls)) |
num_bootstrap_samples |
number of bootstrap samples (integer: default = 1000) |
num_permutations |
number of permutations (integer: default = 1000) |
p_value_adjust_method |
method to adjust p-values for multiple testing (character: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "locfdr", or "none") |
seed |
random seed (integer: default = 12345) |
parallel |
whether to run analyses in parallel (boolean: default = TRUE) |
candidate FFLs with delta-P(FFL) values, p-values, and coefficient estimates (dataframe: number of candidate FFLs x 85 for miRNA-FFLs; number of candidate FFLs x 86 for TF-FFLs; see sample output)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.