# Calculates the proportion of infections in gpm attributable to gpf.
# To understand how trajectories were solved see Trajectories.R or
# Trajectories_allSubtypes.R at /analyses/results/
library(senegalHIVmodel)
library(ggplot2)
library(purrr)
# SUBTYPE C
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmC_m1.2.rda")
load("analyses/plots/solved_objects/FINAL/dmC_m2.rda")
# MODEL 1
gpf2gpm_Cm1 <- deme2deme(births.p = dmC_m1.2$run[2,],
times = dmC_m1.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_Cm1["Model"] <- "Model 1"
# MODEL 2
gpf2gpm_Cm2 <- deme2deme(births.p = dmC_m2.2$run[2,],
times = dmC_m2.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_Cm2["Model"] <- "Model 2"
# PREVALENCE
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmC_m3.rda")
load("analyses/plots/solved_objects/FINAL/dmC_m4.2.rda")
# MODEL 3
gpf2gpm_Cm3 <- deme2deme(births.p = dmC_m3.1$run[2,],
times = dmC_m3.1$run[[1]],
r = 2,
c = 1)
gpf2gpm_Cm3["Model"] <- "Model 3"
# MODEL 4
gpf2gpm_Cm4 <- deme2deme(births.p = dmC_m4.2$run[2,],
times = dmC_m4.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_Cm4["Model"] <- "Model 4"
# merge dataframes
gpf2gpm_C <- rbind(gpf2gpm_Cm1[1,], gpf2gpm_Cm2[1,],
gpf2gpm_Cm3[1,], gpf2gpm_Cm4[1,])
rm(dmC_m1.2, dmC_m2.1, dmC_m2.2, dmC_m3.1, dmC_m4.2)
###############################################################################
# SUBTYPE 02AG
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmAG_m1.rda")
load("analyses/plots/solved_objects/FINAL/dmAG_m2.rda")
# MODEL 1
gpf2gpm_AGm1 <- deme2deme(births.p = dmAG_m1.1$run[2,],
times = dmAG_m1.1$run[[1]],
r = 2,
c = 1)
gpf2gpm_AGm1["Model"] <- "Model 1"
# MODEL 2
gpf2gpm_AGm2 <- deme2deme(births.p = dmAG_m2.1$run[2,],
times = dmAG_m2.1$run[[1]],
r = 2,
c = 1)
gpf2gpm_AGm2["Model"] <- "Model 2"
# PREVALENCE
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmAG_m3.2.rda")
load("analyses/plots/solved_objects/FINAL/dmAG_m4.2.rda")
# MODEL 3
gpf2gpm_AGm3 <- deme2deme(births.p = dmAG_m3.2$run[2,],
times = dmAG_m3.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_AGm3["Model"] <- "Model 3"
# MODEL 4
gpf2gpm_AGm4 <- deme2deme(births.p = dmAG_m4.2$run[2,],
times = dmAG_m4.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_AGm4["Model"] <- "Model 4"
gpf2gpm_AG <- rbind(gpf2gpm_AGm1[1,], gpf2gpm_AGm2[1,],
gpf2gpm_AGm3[1,], gpf2gpm_AGm4[1,])
rm(dmAG_m1.1, dmAG_m2.1, dmAG_m3.2, dmAG_m4.2)
##############################################################################
# SUBTYPES COMBINED
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dm_m2.2.rda")
load("analyses/plots/solved_objects/FINAL/dm_m3.2.rda")
load("analyses/plots/solved_objects/FINAL/dm_m4.2.rda")
#PREVALENCE
load("analyses/plots/solved_objects/FINAL/dm_m5.rda")
load("analyses/plots/solved_objects/FINAL/dm_m6.rda")
load("analyses/plots/solved_objects/FINAL/dm_m7.2.rda")
# Model 2
gpf2gpm_m2 <- deme2deme(births.p = dm_m2.2$run[2,],
times = dm_m2.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_m2["Model"] <- "Model 2"
# Model 5 (prevalence) = Model 2
gpf2gpm_m5 <- deme2deme(births.p = dm_m5.1$run[2,],
times = dm_m5.1$run[[1]],
r = 2,
c = 1)
gpf2gpm_m5["Model"] <- "Model 5"
# Model 3
gpf2gpm_m3 <- deme2deme(births.p = dm_m3.2$run[2,],
times = dm_m3.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_m3["Model"] <- "Model 3"
# Model 6 (prevalence) = Model 3
gpf2gpm_m6 <- deme2deme(births.p = dm_m6.1$run[2,],
times = dm_m6.1$run[[1]],
r = 2,
c = 1)
gpf2gpm_m6["Model"] <- "Model 6"
# Model 4
gpf2gpm_m4 <- deme2deme(births.p = dm_m4.2$run[2,],
times = dm_m4.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_m4["Model"] <- "Model 4"
# Model 7 (prevalence) = Model 4
gpf2gpm_m7 <- deme2deme(births.p = dm_m7.2$run[2,],
times = dm_m7.2$run[[1]],
r = 2,
c = 1)
gpf2gpm_m7["Model"] <- "Model 7"
gpf2gpm_All <- rbind(gpf2gpm_m2[1,], gpf2gpm_m3[1,],gpf2gpm_m4[1,],
gpf2gpm_m5[1,], gpf2gpm_m6[1,],gpf2gpm_m7[1,])
save(gpf2gpm_C, gpf2gpm_AG, gpf2gpm_All, file="gpf2gpm.rda")
rm(dm_m2.2, dm_m3.2, dm_m4.2, dm_m5.1, dm_m6.1, dm_m7.2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.