# Calculates the proportion of infections in gpf attributable to gpm.
# To understand how trajectories were solved see Trajectories.R or
# Trajectories_allSubtypes.R at /analyses/results/
library(senegalHIVmodel)
library(ggplot2)
library(purrr)
# SUBTYPE C
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmC_m1.2.rda")
load("analyses/plots/solved_objects/FINAL/dmC_m2.rda")
# MODEL 1
gpm2gpf_Cm1 <- deme2deme(births.p = dmC_m1.2$run[2,],
times = dmC_m1.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_Cm1["Model"] <- "Model 1"
# MODEL 2
gpm2gpf_Cm2 <- deme2deme(births.p = dmC_m2.2$run[2,],
times = dmC_m2.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_Cm2["Model"] <- "Model 2"
# PREVALENCE
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmC_m3.rda")
load("analyses/plots/solved_objects/FINAL/dmC_m4.2.rda")
# MODEL 3
gpm2gpf_Cm3 <- deme2deme(births.p = dmC_m3.1$run[2,],
times = dmC_m3.1$run[[1]],
r = 1,
c = 2)
gpm2gpf_Cm3["Model"] <- "Model 3"
# MODEL 4
gpm2gpf_Cm4 <- deme2deme(births.p = dmC_m4.2$run[2,],
times = dmC_m4.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_Cm4["Model"] <- "Model 4"
# merge dataframes
gpm2gpf_C <- rbind(gpm2gpf_Cm1[1,], gpm2gpf_Cm2[1,],
gpm2gpf_Cm3[1,], gpm2gpf_Cm4[1,])
rm(dmC_m1.2, dmC_m2.1, dmC_m2.2, dmC_m3.1, dmC_m4.2)
###############################################################################
# SUBTYPE 02AG
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmAG_m1.rda")
load("analyses/plots/solved_objects/FINAL/dmAG_m2.rda")
# MODEL 1
gpm2gpf_AGm1 <- deme2deme(births.p = dmAG_m1.1$run[2,],
times = dmAG_m1.1$run[[1]],
r = 1,
c = 2)
gpm2gpf_AGm1["Model"] <- "Model 1"
# MODEL 2
gpm2gpf_AGm2 <- deme2deme(births.p = dmAG_m2.1$run[2,],
times = dmAG_m2.1$run[[1]],
r = 1,
c = 2)
gpm2gpf_AGm2["Model"] <- "Model 2"
# PREVALENCE
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dmAG_m3.2.rda")
load("analyses/plots/solved_objects/FINAL/dmAG_m4.2.rda")
# MODEL 3
gpm2gpf_AGm3 <- deme2deme(births.p = dmAG_m3.2$run[2,],
times = dmAG_m3.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_AGm3["Model"] <- "Model 3"
# MODEL 4
gpm2gpf_AGm4 <- deme2deme(births.p = dmAG_m4.2$run[2,],
times = dmAG_m4.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_AGm4["Model"] <- "Model 4"
gpm2gpf_AG <- rbind(gpm2gpf_AGm1[1,], gpm2gpf_AGm2[1,],
gpm2gpf_AGm3[1,], gpm2gpf_AGm4[1,])
rm(dmAG_m1.1, dmAG_m2.1, dmAG_m3.2, dmAG_m4.2)
##############################################################################
# SUBTYPES COMBINED
# Load solved objects
load("analyses/plots/solved_objects/FINAL/dm_m2.2.rda")
load("analyses/plots/solved_objects/FINAL/dm_m3.2.rda")
load("analyses/plots/solved_objects/FINAL/dm_m4.2.rda")
#PREVALENCE
load("analyses/plots/solved_objects/FINAL/dm_m5.rda")
load("analyses/plots/solved_objects/FINAL/dm_m6.rda")
load("analyses/plots/solved_objects/FINAL/dm_m7.2.rda")
# Model 2
gpm2gpf_m2 <- deme2deme(births.p = dm_m2.2$run[2,],
times = dm_m2.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_m2["Model"] <- "Model 2"
# Model 5 (prevalence) = Model 2
gpm2gpf_m5 <- deme2deme(births.p = dm_m5.1$run[2,],
times = dm_m5.1$run[[1]],
r = 1,
c = 2)
gpm2gpf_m5["Model"] <- "Model 5"
# Model 3
gpm2gpf_m3 <- deme2deme(births.p = dm_m3.2$run[2,],
times = dm_m3.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_m3["Model"] <- "Model 3"
# Model 6 (prevalence) = Model 3
gpm2gpf_m6 <- deme2deme(births.p = dm_m6.1$run[2,],
times = dm_m6.1$run[[1]],
r = 1,
c = 2)
gpm2gpf_m6["Model"] <- "Model 6"
# Model 4
gpm2gpf_m4 <- deme2deme(births.p = dm_m4.2$run[2,],
times = dm_m4.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_m4["Model"] <- "Model 4"
# Model 7 (prevalence) = Model 4
gpm2gpf_m7 <- deme2deme(births.p = dm_m7.2$run[2,],
times = dm_m7.2$run[[1]],
r = 1,
c = 2)
gpm2gpf_m7["Model"] <- "Model 7"
gpm2gpf_All <- rbind(gpm2gpf_m2[1,], gpm2gpf_m3[1,],gpm2gpf_m4[1,],
gpm2gpf_m5[1,], gpm2gpf_m6[1,],gpm2gpf_m7[1,])
save(gpm2gpf_C, gpm2gpf_AG, gpm2gpf_All, file="gpm2gpf.rda")
rm(dm_m2.2, dm_m3.2, dm_m4.2, dm_m5.1, dm_m6.1, dm_m7.2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.