knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

Prepare working environment

rm(list = ls())
if (!require("pak")) install.packages("pak")
pak::pkg_install("thierrygosselin/assigner")
library(assigner)
assigner::install_gsi_sim(fromSource = TRUE)

Prepare whitelists

all.whitelists <- list.files(path = "~/Desktop/whitelists_salmon", pattern = "whitelist")
all.whitelists # to see if the whitelists are all there

Create a function to run your assignment

whitelists_assigner <- function(x) {
  res <- assigner::assignment_ngs(
    data = "subset_melville_salmon.tsv", #change for what you want
    whitelist.markers = x, # don't change this one,
    assignment.analysis = "adegenet", #change for what you want
    common.markers = TRUE,#change for what you want
    marker.number = "all",# I think you get the idea...
    pop.levels = c(1,2,3,4,5,6,7,8,9,10,11),
    sampling.method = "random",
    iteration.method = 1,
    keep.gsi.files = FALSE
  )
}

Run the assignment

salmon.assignment.res <- purrr::map(
.x = all.whitelists, # your whitelist created above
.f = whitelists_assigner # your new function
)


thierrygosselin/assigner documentation built on Nov. 9, 2024, 3:38 a.m.