#' @keywords internal
ab_n <- function(ab_nmin1, n) {
if (n == 0) {
ab_n <- c(1, 0)
} else {
ab_n <- c(3 * ab_nmin1[2] / n, (2 * ab_nmin1[2] + ab_nmin1[1]) / n)
}
return(ab_n)
}
#' @keywords internal
ab <- function(n) {
ab_mat <- matrix(0,
nrow = n + 1,
ncol = 2)
ab_mat[1, ] <- c(1, 0)
for (i in 2:(n + 1)) {
ab_mat[i, ] <- ab_n(ab_mat[i - 1, ], i - 1)
}
return(ab_mat)
}
#' @keywords internal
p_n <- function(n, mu, t) {
ab_mat <- ab(n)
p <- ab_mat * (mu * t) ^ (0:n) * exp(-3 * mu * t)
return(p)
}
#' @keywords internal
mutate_seq_explicit <- function(local_sequence, pn) {
bases <- c("a", "c", "g", "t")
seq_before_mut <- local_sequence
seq_after_mut <- seq_before_mut
num_mut <- 0
for (j in 1:4) {
ind <- which(seq_before_mut == bases[j])
a <- sample(x = seq_along(pn),
size = length(ind),
replace = TRUE,
prob = pn)
chosen_col <- rep(1, length(a))
chosen_col[a > nrow(pn)] <- 2
b <- which(chosen_col == 1)
num_mut <- num_mut + sum(a[b] - 1)
b <- which(chosen_col == 2)
num_mut <- num_mut + sum((a[b] - nrow(pn) - 1), na.rm = TRUE)
if (length(b) > 0) {
other_bases <- bases[-which(bases == bases[j])]
chosen_bases <- sample(other_bases, size = length(b), replace = TRUE)
mutated_bases <- ind[b]
seq_after_mut[mutated_bases] <- chosen_bases
}
}
return(list("seq" = seq_after_mut,
"num_mut" = num_mut))
}
#' simulate a sequence assuming substitutions are only accumulated along the
#' branches, using the explicit simulation method (e.g. reverse substitutions
#' are modeled explicitly)
#' @param x a phylogenetic tree \code{tree}, i.e. an object of class
#' \code{phylo} or and object of class \code{pml}.
#' @param l length of the sequence to simulate.
#' @param Q the rate matrix.
#' @param bf base frequencies.
#' @param rootseq a vector of length l containing the root sequence, other root
#' sequence is randomly generated.
#' @param rate mutation rate or scaler for the edge length, a numerical value
#' greater than zero.
#' @return list with four items \enumerate{
#' \item{alignment} Phydat object with the resulting alignment
#' \item{rootseq} the rootsequence used
#' \item{total_branch_substitutions} total number of substitutions accumulated
#' on the branches
#' \item{total_node_substitutions} total number of substitutions accumulated at
#' the nodes}
#' @export
sim_normal_explicit <- function(x,
l = 1000,
Q = NULL, # nolint
bf = NULL,
rootseq = NULL,
rate = 1) {
levels <- c("a", "c", "g", "t")
lbf <- length(levels)
if (is.null(bf)) bf <- rep(1 / lbf, lbf)
if (is.null(Q)) {
Q <- rep(1, lbf * (lbf - 1) / 2) # nolint
}
if (is.matrix(Q)) Q <- Q[lower.tri(Q)] # nolint
# capital Q is retained to conform to mathematical notation on wikipedia
# and in the literature
if (is.null(rootseq)) rootseq <- sample(levels, l, replace = TRUE, prob = bf)
x <- stats::reorder(x)
edge <- x$edge
num_nodes <- max(edge)
res <- matrix(NA, l, num_nodes)
parent <- as.integer(edge[, 1])
child <- as.integer(edge[, 2])
root <- as.integer(parent[!match(parent, child, 0)][1])
res[, root] <- rootseq
tl <- x$edge.length
total_branch_subs <- 0
daughter_subs <- rep(0, length(parent))
for (i in seq_along(tl)) {
from <- parent[i]
to <- child[i]
P <- p_n(100, rate, tl[i]) # get_p_matrix(tl[i], eig, rate) # nolint
# capital P is retained to conform to mathematical notation on wikipedia
# and in the literature
seq_before_mut <- res[, from]
seq_after_mut <- mutate_seq_explicit(seq_before_mut, P)
res[, to] <- seq_after_mut$seq
branch_subs <- sum(res[, from] != res[, to])
total_branch_subs <- total_branch_subs + branch_subs
daughter_subs[i] <- seq_after_mut$num_mut
}
# now, given the daughter subs string, we need to calculate the total
# accumulated divergence
updated_subs <- calc_accumulated_substitutions(x, daughter_subs)
phy_no_extinct <- geiger::drop.extinct(x)
k <- length(x$tip.label)
label <- c(x$tip.label, as.character((k + 1):num_nodes))
colnames(res) <- label
res <- res[, phy_no_extinct$tip.label, drop = FALSE]
alignment_phydat <- phyDat.DNA(as.data.frame(res, stringsAsFactors = FALSE))
output <- list("alignment" = alignment_phydat,
"root_seq" = rootseq,
"total_branch_substitutions" = updated_subs$total_branch_subs,
"total_node_substitutions" = updated_subs$total_node_subs,
"total_accumulated_substitutions" =
updated_subs$total_accumulated_substitutions)
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.