#' Yeo-Johnson transformation
#'
#' `step_YeoJohnson()` creates a *specification* of a recipe step that will
#' transform data using a Yeo-Johnson transformation.
#'
#' @inheritParams step_center
#' @param lambdas A numeric vector of transformation values. This
#' is `NULL` until computed by [prep()].
#' @param limits A length 2 numeric vector defining the range to
#' compute the transformation parameter lambda.
#' @param num_unique An integer where data that have less possible
#' values will not be evaluated for a transformation.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details The Yeo-Johnson transformation is very similar to the
#' Box-Cox but does not require the input variables to be strictly
#' positive. In the package, the partial log-likelihood function is
#' directly optimized within a reasonable set of transformation
#' values (which can be changed by the user).
#'
#' This transformation is typically done on the outcome variable
#' using the residuals for a statistical model (such as ordinary
#' least squares). Here, a simple null model (intercept only) is
#' used to apply the transformation to the *predictor*
#' variables individually. This can have the effect of making the
#' variable distributions more symmetric.
#'
#' If the transformation parameters are estimated to be very
#' closed to the bounds, or if the optimization fails, a value of
#' `NA` is used and no transformation is applied.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{numeric, the lambda estimate}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @references Yeo, I. K., and Johnson, R. A. (2000). A new family of power
#' transformations to improve normality or symmetry. *Biometrika*.
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' yj_transform <- step_YeoJohnson(rec, all_numeric())
#'
#' yj_estimates <- prep(yj_transform, training = biomass_tr)
#'
#' yj_te <- bake(yj_estimates, biomass_te)
#'
#' plot(density(biomass_te$sulfur), main = "before")
#' plot(density(yj_te$sulfur), main = "after")
#'
#' tidy(yj_transform, number = 1)
#' tidy(yj_estimates, number = 1)
step_YeoJohnson <-
function(recipe, ..., role = NA, trained = FALSE,
lambdas = NULL, limits = c(-5, 5), num_unique = 5,
na_rm = TRUE,
skip = FALSE,
id = rand_id("YeoJohnson")) {
add_step(
recipe,
step_YeoJohnson_new(
terms = enquos(...),
role = role,
trained = trained,
lambdas = lambdas,
limits = sort(limits)[1:2],
num_unique = num_unique,
na_rm = na_rm,
skip = skip,
id = id
)
)
}
step_YeoJohnson_new <-
function(terms, role, trained, lambdas, limits, num_unique, na_rm, skip, id) {
step(
subclass = "YeoJohnson",
terms = terms,
role = role,
trained = trained,
lambdas = lambdas,
limits = limits,
num_unique = num_unique,
na_rm = na_rm,
skip = skip,
id = id
)
}
#' @export
prep.step_YeoJohnson <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
check_number_whole(x$num_unique, args = "num_unique")
check_bool(x$na_rm, arg = "na_rm")
if (!is.numeric(x$limits) || any(is.na(x$limits)) || length(x$limits) != 2) {
cli::cli_abort("{.arg limits} should be a numeric vector with two values,
not {.obj_type_friendly {x$limits}}")
}
x$limits <- sort(x$limits)
values <- vapply(
training[, col_names],
estimate_yj,
c(lambda = 0),
limits = x$limits,
num_unique = x$num_unique,
na_rm = x$na_rm
)
values <- values[!is.na(values)]
step_YeoJohnson_new(
terms = x$terms,
role = x$role,
trained = TRUE,
lambdas = values,
limits = x$limits,
num_unique = x$num_unique,
na_rm = x$na_rm,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_YeoJohnson <- function(object, new_data, ...) {
col_names <- names(object$lambdas)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
new_data[[col_name]] <- yj_transform(
new_data[[col_name]],
lambda = object$lambdas[col_name]
)
}
new_data
}
#' @export
print.step_YeoJohnson <-
function(x, width = max(20, options()$width - 39), ...) {
title <- "Yeo-Johnson transformation on "
print_step(names(x$lambdas), x$terms, x$trained, title, width)
invisible(x)
}
## computes the new data given a lambda
#' Internal Functions
#'
#' @keywords internal
#' @rdname recipes-internal
#' @export
yj_transform <- function(x, lambda, ind_neg = NULL, eps = 0.001) {
if (is.na(lambda)) {
return(x)
}
if (!inherits(x, "tbl_df") || is.data.frame(x)) {
x <- unlist(x, use.names = FALSE)
} else {
if (!is.vector(x)) {
x <- as.vector(x)
}
}
# TODO case weights: can we use weights here?
if (is.null(ind_neg)) {
dat_neg <- x < 0
ind_neg <- list(is = which(dat_neg), not = which(!dat_neg))
}
not_neg <- ind_neg[["not"]]
is_neg <- ind_neg[["is"]]
nn_trans <- function(x, lambda) {
if (abs(lambda) < eps) {
log(x + 1)
} else {
((x + 1)^lambda - 1) / lambda
}
}
ng_trans <- function(x, lambda) {
if (abs(lambda - 2) < eps) {
-log(-x + 1)
} else {
-((-x + 1)^(2 - lambda) - 1) / (2 - lambda)
}
}
if (length(not_neg) > 0) {
x[not_neg] <- nn_trans(x[not_neg], lambda)
}
if (length(is_neg) > 0) {
x[is_neg] <- ng_trans(x[is_neg], lambda)
}
x
}
## Helper for the log-likelihood calc for eq 3.1 of Yeo, I. K.,
## & Johnson, R. A. (2000). A new family of power transformations
## to improve normality or symmetry. Biometrika. page 957
ll_yj <- function(lambda, y, ind_neg, const, eps = 0.001) {
n <- length(y)
y_t <- yj_transform(y, lambda, ind_neg)
mu_t <- mean(y_t)
var_t <- var(y_t) * (n - 1) / n
res <- -.5 * n * log(var_t) + (lambda - 1) * const
res
}
## eliminates missing data and returns -llh
yj_obj <- function(lam, dat, ind_neg, const) {
ll_yj(lambda = lam, y = dat, ind_neg = ind_neg, const = const)
}
## estimates the values
#' @keywords internal
#' @rdname recipes-internal
#' @export
estimate_yj <- function(dat,
limits = c(-5, 5),
num_unique = 5,
na_rm = TRUE,
call = caller_env(2)) {
na_rows <- which(is.na(dat))
if (length(na_rows) > 0) {
if (na_rm) {
dat <- dat[-na_rows]
} else {
cli::cli_abort(
c(
x = "Missing values are not allowed for the YJ transformation.",
i = "See {.arg na_rm} option."
),
call = call
)
}
}
eps <- .001
if (length(unique(dat)) < num_unique) {
return(NA)
}
dat_neg <- dat < 0
ind_neg <- list(is = which(dat_neg), not = which(!dat_neg))
const <- sum(sign(dat) * log(abs(dat) + 1))
res <- optimize(
yj_obj,
interval = limits,
maximum = TRUE,
dat = dat,
ind_neg = ind_neg,
const = const,
tol = .0001
)
lam <- res$maximum
if (abs(limits[1] - lam) <= eps | abs(limits[2] - lam) <= eps) {
lam <- NA
}
lam
}
#' @rdname tidy.recipe
#' @export
tidy.step_YeoJohnson <- tidy.step_BoxCox
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.