#' Handle levels in multiple predictors together
#'
#' `step_dummy_multi_choice()` creates a *specification* of a recipe step that
#' will convert multiple nominal data (e.g. characters or factors) into one or
#' more numeric binary model terms for the levels of the original data.
#'
#' @inheritParams step_dummy
#' @inheritParams step_center
#' @inheritParams step_other
#' @inheritParams step_pca
#' @param input A character vector containing the names of the columns used.
#' This is `NULL` until the step is trained by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#'
#' @details
#' The overall proportion (or total counts) of the categories are computed. The
#' `"other"` category is used in place of any categorical levels whose
#' individual proportion (or frequency) in the training set is less than
#' `threshold`.
#'
#' This step produces a number of columns, based on the number of categories it
#' finds. The naming of the columns is determined by the function based on the
#' `naming` argument. The default is to return `<prefix>_<category name>`. By
#' default `prefix` is `NULL`, which means the name of the first column
#' selected will be used in place.
#'
#' @template dummy-naming
#'
#' @details
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_dummy_multi_choice"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `columns` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{columns}{character, names of resulting columns}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @examples
#' library(tibble)
#' languages <- tribble(
#' ~lang_1, ~lang_2, ~lang_3,
#' "English", "Italian", NA,
#' "Spanish", NA, "French",
#' "Armenian", "English", "French",
#' NA, NA, NA
#' )
#'
#' dummy_multi_choice_rec <- recipe(~., data = languages) %>%
#' step_dummy_multi_choice(starts_with("lang")) %>%
#' prep()
#'
#' bake(dummy_multi_choice_rec, new_data = NULL)
#' tidy(dummy_multi_choice_rec, number = 1)
#'
#' dummy_multi_choice_rec2 <- recipe(~., data = languages) %>%
#' step_dummy_multi_choice(starts_with("lang"),
#' prefix = "lang",
#' threshold = 0.2
#' ) %>%
#' prep()
#'
#' bake(dummy_multi_choice_rec2, new_data = NULL)
#' tidy(dummy_multi_choice_rec2, number = 1)
#'
#' @export
step_dummy_multi_choice <- function(recipe,
...,
role = "predictor",
trained = FALSE,
threshold = 0,
levels = NULL,
input = NULL,
other = "other",
naming = dummy_names,
prefix = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy_multi_choice")) {
add_step(
recipe,
step_dummy_multi_choice_new(
terms = enquos(...),
role = role,
trained = trained,
threshold = threshold,
levels = levels,
input = input,
other = other,
naming = naming,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_dummy_multi_choice_new <-
function(terms, role, trained, threshold, levels, input, other, naming,
prefix, keep_original_cols, skip, id) {
step(
subclass = "dummy_multi_choice",
terms = terms,
role = role,
trained = trained,
threshold = threshold,
levels = levels,
input = input,
other = other,
naming = naming,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_dummy_multi_choice <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("nominal", "logical"))
if (x$threshold >= 1) {
check_number_whole(x$threshold, arg = "threshold")
} else {
check_number_decimal(x$threshold, min = 0, arg = "threshold")
}
check_string(x$other, arg = "other", allow_null = TRUE)
check_function(x$naming, arg = "naming", allow_empty = FALSE)
levels <- purrr::map(training[, col_names], levels)
levels <- vctrs::list_unchop(levels, ptype = character(), name_spec = rlang::zap())
levels <- levels[!is.na(levels)]
levels <- keep_levels(levels, x$threshold, other = x$other)
step_dummy_multi_choice_new(
terms = x$terms,
role = x$role,
trained = TRUE,
threshold = x$threshold,
levels = levels,
input = col_names,
other = x$other,
naming = x$naming,
prefix = x$prefix,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_dummy_multi_choice <- function(object, new_data, ...) {
col_names <- object$input
check_new_data(col_names, object, new_data)
indicators <- multi_dummy(new_data[, col_names], object$levels)
prefix <- object$prefix
if (is.null(prefix)) {
prefix <- if (length(col_names) >= 1) col_names[[1]] else ""
}
used_lvl <- gsub(paste0("^", prefix), "", colnames(indicators))
colnames(indicators) <- object$naming(prefix, used_lvl)
indicators <- as_tibble(indicators)
indicators <- check_name(indicators, new_data, object, names(indicators))
new_data <- vec_cbind(new_data, indicators)
new_data <- remove_original_cols(new_data, object, col_names)
new_data
}
multi_dummy <- function(x, y) {
row_id <- rep(seq_len(nrow(x)), times = ncol(x))
values <- vctrs::list_unchop(
purrr::map(x, as.character),
ptype = character(),
name_spec = rlang::zap()
)
if (y$collapse) {
values[(!values %in% y$keep) & !is.na(values)] <- y$other
}
row_id <- row_id[!is.na(values)]
values <- values[!is.na(values)]
original_levels <- c(y$keep, y$other)
values <- factor(values, levels = original_levels)
res <- Matrix::sparseMatrix(
i = row_id,
j = as.numeric(values),
dims = c(nrow(x), length(original_levels))
)
colnames(res) <- levels(values)
res <- as.matrix(res)
if (ncol(res) > 0) {
res <- apply(res, 2, as.integer, simplify = FALSE)
}
# to preserve old behavior drop other if empty
res <- as_tibble(res)
if (sum(res[y$other]) == 0) {
res <- dplyr::select(res, -y$other)
}
return(res)
}
#' @export
print.step_dummy_multi_choice <-
function(x, width = max(20, options()$width - 20), ...) {
title <- "Multi-choice dummy variables from "
print_step(x$input, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_dummy_multi_choice <- function(x, ...) {
if (is_trained(x)) {
if (x$levels$collapse) {
columns <- c(x$levels$keep, x$levels$other)
} else {
columns <- x$levels$keep
}
if (length(x$input) >= 1) {
terms <- x$input[[1]]
} else {
terms <- character()
}
res <- tibble(terms = terms, columns = columns)
} else {
res <- tibble(terms = sel2char(x$terms), columns = rlang::na_chr)
}
res$id <- x$id
res
}
#' @export
tunable.step_dummy_multi_choice <- function(x, ...) {
tibble::tibble(
name = c("threshold"),
call_info = list(
list(pkg = "dials", fun = "threshold")
),
source = "recipe",
component = "step_dummy_multi_choice",
component_id = x$id
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.