library(testthat)
library(recipes)
skip_if_not_installed("modeldata")
data(credit_data, package = "modeldata")
set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)
credit_tr <- credit_data[in_training, ]
credit_te <- credit_data[-in_training, ]
test_that("simple mean", {
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec %>%
step_impute_mean(Age, Assets, Income, id = "")
imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE)
te_imputed <- bake(imputed, new_data = credit_te)
expect_equal(te_imputed$Age, credit_te$Age)
assets_pred <- mean(credit_tr$Assets, na.rm = TRUE)
assets_pred <- recipes:::cast(assets_pred, credit_tr$Assets)
expect_equal(
te_imputed$Assets[is.na(credit_te$Assets)],
rep(assets_pred, sum(is.na(credit_te$Assets)))
)
inc_pred <- mean(credit_tr$Income, na.rm = TRUE)
inc_pred <- recipes:::cast(inc_pred, credit_tr$Assets)
expect_equal(
te_imputed$Income[is.na(credit_te$Income)],
rep(inc_pred, sum(is.na(credit_te$Income)))
)
means <- vapply(credit_tr[, c("Age", "Assets", "Income")],
mean, numeric(1),
na.rm = TRUE
)
means <- purrr::map2(means, credit_tr[, c("Age", "Assets", "Income")], recipes:::cast)
means <- unlist(means)
imp_tibble_un <-
tibble(
terms = c("Age", "Assets", "Income"),
value = rep(NA_real_, 3),
id = ""
)
imp_tibble_tr <-
tibble(
terms = c("Age", "Assets", "Income"),
value = unname(means),
id = ""
)
expect_equal(as.data.frame(tidy(impute_rec, 1)), as.data.frame(imp_tibble_un))
expect_equal(tidy(imputed, 1), imp_tibble_tr)
})
test_that("trimmed mean", {
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec %>%
step_impute_mean(Assets, trim = .1)
imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE)
te_imputed <- bake(imputed, new_data = credit_te)
mean_val <- mean(credit_tr$Assets, na.rm = TRUE, trim = .1)
mean_val <- recipes:::cast(mean_val, credit_tr$Assets)
expect_equal(
te_imputed$Assets[is.na(credit_te$Assets)],
rep(mean_val, sum(is.na(credit_te$Assets)))
)
})
test_that("non-numeric", {
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec %>%
step_impute_mean(Assets, Job)
expect_snapshot(error = TRUE,
prep(impute_rec, training = credit_tr, verbose = FALSE)
)
})
test_that("all NA values", {
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec %>%
step_impute_mean(Age, Assets)
imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE)
imputed_te <- bake(imputed, new_data = credit_te %>% mutate(Age = NA))
expect_equal(unique(imputed_te$Age), imputed$steps[[1]]$means$Age)
})
test_that("tunable", {
rec <-
recipe(~., data = iris) %>%
step_impute_mean(all_predictors())
rec_param <- tunable.step_impute_mean(rec$steps[[1]])
expect_equal(rec_param$name, c("trim"))
expect_true(all(rec_param$source == "recipe"))
expect_true(is.list(rec_param$call_info))
expect_equal(nrow(rec_param), 1)
expect_equal(
names(rec_param),
c("name", "call_info", "source", "component", "component_id")
)
})
test_that("trim works", {
set.seed(1234)
x <- rnorm(1000)
x[sample(seq_along(x), 100)] <- NA
expect_equal(
purrr::map(seq(0, 1, by = 0.1), ~mean(x, trim = .x, na.rm = TRUE)),
purrr::map(seq(0, 1, by = 0.1), ~trim(x, trim = .x) %>% mean(na.rm = TRUE))
)
})
test_that("case weights", {
credit_tr_cw <- credit_tr %>%
mutate(Amount = frequency_weights(Amount))
impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>%
step_impute_mean(Age, Assets, Income) %>%
prep()
ref_means <- credit_tr %>%
select(Age, Assets, Income) %>%
averages(wts = credit_tr_cw$Amount) %>%
purrr::map(round, 0)
expect_equal(
impute_rec$steps[[1]]$means,
ref_means
)
# Trimmed
impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>%
step_impute_mean(Age, Assets, Income, trim = 0.2) %>%
prep()
ref_means <- credit_tr %>%
dplyr::select(Age, Assets, Income) %>%
purrr::map(trim, trim = 0.2) %>%
purrr::map(weighted.mean,
w = as.numeric(credit_tr_cw$Amount),
na.rm = TRUE) %>%
purrr::map(round, 0)
expect_equal(
impute_rec$steps[[1]]$means,
ref_means
)
expect_snapshot(impute_rec)
# ----------------------------------------------------------------------------
credit_tr_cw <- credit_tr %>%
mutate(Amount = importance_weights(Amount))
impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>%
step_impute_mean(Age, Assets, Income) %>%
prep()
ref_means <- credit_tr %>%
select(Age, Assets, Income) %>%
averages(wts = NULL) %>%
purrr::map(round, 0)
expect_equal(
impute_rec$steps[[1]]$means,
ref_means
)
# Trimmed
impute_rec <- recipe(Price ~ ., data = credit_tr_cw) %>%
step_impute_mean(Age, Assets, Income, trim = 0.2) %>%
prep()
ref_means <- credit_tr %>%
dplyr::select(Age, Assets, Income) %>%
purrr::map(trim, trim = 0.2) %>%
purrr::map(~weighted.mean(.x, w = rep(1, length(.x)), na.rm = TRUE)) %>%
purrr::map(round, 0)
expect_equal(
impute_rec$steps[[1]]$means,
ref_means
)
expect_snapshot(impute_rec)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec %>%
step_impute_mean(Age) %>%
update_role(Age, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
imputed <- prep(impute_rec, training = credit_tr, verbose = FALSE)
expect_snapshot(error = TRUE, bake(imputed, new_data = credit_te[, c(-5)]))
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_impute_mean(rec)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_impute_mean(rec1)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_impute_mean(rec)
expect <- tibble(terms = character(), value = double(), id = character())
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("printing", {
rec <- recipe(Price ~ ., data = credit_tr) %>%
step_impute_mean(Age, Assets, Income)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
test_that("tunable is setup to work with extract_parameter_set_dials", {
skip_if_not_installed("dials")
rec <- recipe(~., data = mtcars) %>%
step_impute_mean(
all_predictors(),
trim = hardhat::tune()
)
params <- extract_parameter_set_dials(rec)
expect_s3_class(params, "parameters")
expect_identical(nrow(params), 1L)
})
test_that("bad args", {
expect_snapshot(
recipe(~., data = mtcars) %>%
step_impute_mean(
all_predictors(),
trim = 0.6
) %>%
prep(),
error = TRUE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.