#' @importFrom stats ts
train_var <- function(.data, specials, ic, ...) {
# Get args
p <- specials$AR[[1]]$p
# Get response variables
y <- invoke(cbind, unclass(.data)[measured_vars(.data)])
# Get xreg
constant <- specials$xreg[[1]]$constant
xreg <- specials$xreg[[1]]$xreg
# Choose best model
reduce(transpose(expand.grid(p = p, constant = constant)),
function(best, args) {
new <- estimate_var(y, args$p, xreg, args$constant)
if ((new$fit[[ic]] %||% Inf) < (best$fit[[ic]] %||% Inf)) {
best <- new
}
best
},
.init = NULL
)
}
estimate_var <- function(y, p, xreg, constant) {
if (constant) {
xreg <- cbind(constant = rep(1, NROW(y)), xreg)
}
y_lag <- stats::embed(y, dimension = p + 1)[, -(seq_len(NCOL(y))), drop = FALSE]
colnames(y_lag) <- pmap_chr(expand.grid(colnames(y), seq_len(p)),
sprintf,
fmt = "lag(%s,%i)"
)
if (p > 0) {
xreg <- xreg[-seq_len(p), , drop = FALSE]
y <- y[-seq_len(p), , drop = FALSE]
}
dm <- cbind(y_lag, xreg)
j <- complete.cases(dm, y)
fit <- stats::lm.fit(as.matrix(dm)[j, , drop = FALSE], y[j, , drop = FALSE])
resid <- matrix(NA_real_, nrow = nrow(y), ncol = ncol(y))
resid[j, ] <- fit$residuals
if (is_empty(fit$coefficients)) {
coef <- matrix(nrow = 0, ncol = NCOL(y))
}
else {
coef <- as.matrix(fit$coefficients)
}
colnames(coef) <- colnames(y)
nr <- NROW(stats::na.omit(y))
nc <- NCOL(y)
sig <- crossprod(fit$residuals)
sig_det <- det(sig / nr)
loglik <- -(nr * nc / 2) * log(2 * pi) - (nr / 2) * log(sig_det) -
(1 / 2) * sum(diag(resid %*% solve(sig / nr) %*% t(resid)), na.rm = TRUE)
npar <- (length(fit$coef) + nc^2)
aic <- -2 * loglik + 2 * npar
bic <- aic + npar * (log(nr) - 2)
aicc <- aic + 2 * npar * (npar + 1) / (nr - npar - 1)
# Output model
structure(
list(
coef = coef,
fits = rbind(matrix(nrow = p, ncol = NCOL(y)), y - resid),
resid = rbind(matrix(nrow = p, ncol = NCOL(y)), resid),
fit = tibble(
sigma2 = list(sig / fit$df.residual), log_lik = loglik,
AIC = aic, AICc = aicc, BIC = bic
),
spec = tibble(p = p, constant = constant),
last_obs = y[NROW(y) - seq_len(p) + 1, , drop = FALSE],
model = fit
),
class = "VAR"
)
}
specials_var <- new_specials(
AR = function(p = 0:5) {
if (any(p < 0)) {
warn("The AR order must be non-negative. Only non-negative orders will be considered.")
p <- p[p >= 0]
}
list(p = p)
},
common_xregs,
xreg = function(...) {
dots <- enexprs(...)
env <- map(enquos(...), get_env)
env[map_lgl(env, compose(is_empty, env_parents))] <- NULL
env <- if (!is_empty(env)) get_env(env[[1]]) else base_env()
# Mask user defined lag to retain history when forecasting
env <- env_bury(env, lag = lag)
constants <- map_lgl(dots, inherits, "numeric")
constant_given <- any(map_lgl(dots[constants], `%in%`, -1:1))
model_formula <- new_formula(
lhs = NULL,
rhs = reduce(dots, function(.x, .y) call2("+", .x, .y))
)
xreg <- model.frame(model_formula, data = env, na.action = stats::na.pass)
list(
constant = if (constant_given) as.logical(terms(xreg) %@% "intercept") else c(TRUE, FALSE),
xreg = if (NCOL(xreg) == 0) NULL else xreg
)
},
.required_specials = c("AR", "xreg"),
.xreg_specials = names(common_xregs)
)
#' Estimate a VAR model
#'
#' Searches through the vector of lag orders to find the best VAR model which
#' has lowest AIC, AICc or BIC value. It is implemented using OLS per equation.
#'
#' Exogenous regressors and [`common_xregs`] can be specified in the model
#' formula.
#'
#' @aliases report.VAR
#'
#' @param formula Model specification (see "Specials" section).
#' @param ic The information criterion used in selecting the model.
#' @param ... Further arguments for arima
#'
#' @section Specials:
#'
#' \subsection{AR}{
#' The `AR` special is used to specify the lag order for the auto-regression.
#' \preformatted{
#' AR(p = 0:5)
#' }
#'
#' \tabular{ll}{
#' `p` \tab The order of the auto-regressive (AR) terms. If multiple values are provided, the one which minimises `ic` will be chosen.\cr
#' }
#' }
#'
#' \subsection{xreg}{
#' Exogenous regressors can be included in an VAR model without explicitly using the `xreg()` special. Common exogenous regressor specials as specified in [`common_xregs`] can also be used. These regressors are handled using [stats::model.frame()], and so interactions and other functionality behaves similarly to [stats::lm()].
#'
#' The inclusion of a constant in the model follows the similar rules to [`stats::lm()`], where including `1` will add a constant and `0` or `-1` will remove the constant. If left out, the inclusion of a constant will be determined by minimising `ic`.
#'
#' \preformatted{
#' xreg(...)
#' }
#'
#' \tabular{ll}{
#' `...` \tab Bare expressions for the exogenous regressors (such as `log(x)`)
#' }
#' }
#'
#' @return A model specification.
#'
#' @seealso
#' [Forecasting: Principles and Practices, Vector autoregressions (section 11.2)](https://otexts.com/fpp2/VAR.html)
#'
#' @examples
#'
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' fit <- lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3)))
#'
#' report(fit)
#'
#' fit %>%
#' forecast() %>%
#' autoplot(lung_deaths)
#' @export
VAR <- function(formula, ic = c("aicc", "aic", "bic"), ...) {
ic <- match.arg(ic)
ic <- switch(ic, aicc = "AICc", aic = "AIC", bic = "BIC")
varma_model <- new_model_class("VAR",
train = train_var,
specials = specials_var,
origin = NULL,
check = all_tsbl_checks
)
new_model_definition(varma_model, !!enquo(formula), ic = ic, ...)
}
#' @inherit forecast.ARIMA
#' @examples
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
#' forecast()
#' @export
forecast.VAR <- function(object, new_data = NULL, specials = NULL,
bootstrap = FALSE, times = 5000, ...) {
if (bootstrap) {
abort("Bootstrapped forecasts for VARs are not yet implemented.")
}
h <- NROW(new_data)
p <- object$spec$p
coef <- object$coef
K <- NCOL(coef)
# Get xreg
xreg <- specials$xreg[[1]]$xreg
if (object$spec$constant) {
xreg <- cbind(constant = rep(1, h), xreg)
}
# Compute phi
As <- rep(list(matrix(0, nrow = K, ncol = K)), max(h, p))
for (i in seq_len(p)) {
As[[i]] <- coef[seq_len(K) + (i - 1) * K, ]
}
phi <- rep(list(matrix(0, nrow = K, ncol = K)), h + 1)
phi[[1]] <- diag(K)
for (i in seq_len(h) + 1) {
tmp1 <- phi[[1]] %*% As[[i - 1]]
tmp2 <- matrix(0, nrow = K, ncol = K)
idx <- rev(seq_len(i - 2))
for (j in seq_len(i - 2)) {
tmp2 <- tmp2 + phi[[j + 1]] %*% As[[idx[j]]]
}
phi[[i]] <- tmp1 + tmp2
}
# Compute sigma
sigma.u <- object$fit$sigma2[[1]]
sigma <- rep(list(matrix(nrow = K, ncol = K)), h)
sigma[[1]] <- sigma.u
for (i in seq_len(h - 1) + 1) {
adjust <- matrix(0, nrow = K, ncol = K)
for (j in 2:i) {
adjust <- adjust + t(phi[[j]]) %*% sigma.u %*% phi[[j]]
}
sigma[[i]] <- adjust + sigma[[1]]
}
# Compute forecasts
fc <- matrix(NA, ncol = K, nrow = h)
y_lag <- object$last_obs
for (i in seq_len(h)) {
if (is.null(xreg)) {
Z <- c(t(y_lag))
}
else {
Z <- c(t(y_lag), t(xreg[i, ]))
}
fc[i, ] <- t(coef) %*% Z
y_lag <- rbind(fc[i, , drop = FALSE], y_lag)[seq_len(p), , drop = FALSE]
}
# Output forecasts
if (NCOL(fc) == 1) {
distributional::dist_normal(drop(fc), sqrt(unlist(sigma)))
}
else {
unname(distributional::dist_multivariate_normal(split(fc, row(fc)), sigma))
}
}
#' @inherit fitted.ARIMA
#'
#' @examples
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
#' fitted()
#' @export
fitted.VAR <- function(object, ...) {
object$fits
}
#' @inherit residuals.ARIMA
#'
#' @examples
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
#' residuals()
#' @export
residuals.VAR <- function(object, ...) {
object$resid
}
#' @export
model_sum.VAR <- function(x) {
sprintf("VAR(%s)%s", x$spec$p, ifelse(x$spec$constant, " w/ mean", ""))
}
#' @inherit tidy.ARIMA
#'
#' @examples
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
#' tidy()
#' @export
tidy.VAR <- function(x, ...) {
rdf <- x$model$df.residual
res <- split(x$resid, col(x$resid))
rss <- map_dbl(res, function(resid) sum(resid^2, na.rm = TRUE))
resvar <- rss / rdf
rank <- x$model$rank
R <- chol2inv(x$model$qr$qr[seq_len(rank), seq_len(rank), drop = FALSE])
se <- map(resvar, function(resvar) sqrt(diag(R) * resvar))
coef <- dplyr::as_tibble(x$coef, rownames = "term")
coef <- tidyr::gather(coef, ".response", "estimate", !!!syms(colnames(x$coef)))
mutate(
coef,
std.error = unlist(se),
statistic = !!sym("estimate") / !!sym("std.error"),
p.value = 2 * stats::pt(abs(!!sym("statistic")), rdf, lower.tail = FALSE)
)
}
#' Glance a VAR
#'
#' Construct a single row summary of the VAR model.
#'
#' Contains the variance of residuals (`sigma2`), the log-likelihood (`log_lik`),
#' and information criterion (`AIC`, `AICc`, `BIC`).
#'
#' @inheritParams generics::glance
#'
#' @return A one row tibble summarising the model's fit.
#'
#' @examples
#' lung_deaths <- cbind(mdeaths, fdeaths) %>%
#' as_tsibble(pivot_longer = FALSE)
#'
#' lung_deaths %>%
#' model(VAR(vars(mdeaths, fdeaths) ~ AR(3))) %>%
#' glance()
#' @export
glance.VAR <- function(x, ...) {
x$fit
}
#' @export
report.VAR <- function(object, ...) {
coef <- tidy(object)
coef <- map(
split(coef, factor(coef$.response, levels = unique(coef$.response))),
function(x) `colnames<-`(rbind(x$estimate, s.e. = x$std.error), x$term)
)
imap(coef, function(par, nm) {
cat(sprintf("\nCoefficients for %s:\n", nm))
print.default(round(par, digits = 4), print.gap = 2)
})
cat("\nResidual covariance matrix:\n")
print.default(round(object$fit$sigma2[[1]], 4))
cat(sprintf("\nlog likelihood = %s\n", format(round(object$fit$log_lik, 2L))))
cat(
sprintf(
"AIC = %s\tAICc = %s\tBIC = %s",
format(round(object$fit$AIC, 2L)),
format(round(object$fit$AICc, 2L)),
format(round(object$fit$BIC, 2L))
)
)
}
#' @inherit generate.ETS
#'
#' @export
generate.VAR <- function(x, new_data, specials, ...){
coef <- x$coef
K <- NCOL(coef)
if (!".innov" %in% names(new_data)) {
new_data[[".innov"]] <- generate(distributional::dist_multivariate_normal(list(matrix(0, ncol = K)), x$fit$sigma2), nrow(new_data))[[1L]]
}
p <- x$spec$p
kr <- key_data(new_data)$.rows
h <- lengths(kr)
# Get xreg
xreg <- specials$xreg[[1]]$xreg
# Generate paths
var_sim <- function(i) {
if (x$spec$constant) {
xreg <- cbind(constant = rep_len(1, length(i)), xreg)
}
.innov <- new_data$.innov[i,]
.sim <- matrix(NA, nrow = h, ncol = K)
y_lag <- x$last_obs
for (i in seq_along(i)) {
if (is.null(xreg)) {
Z <- c(t(y_lag))
}
else {
Z <- c(t(y_lag), t(xreg[i, ]))
}
.sim[i, ] <- t(coef) %*% Z + .innov[i,]
y_lag <- rbind(.sim[i, , drop = FALSE], y_lag)[seq_len(p), , drop = FALSE]
}
.sim
}
new_data$.sim <- do.call(rbind, lapply(kr, var_sim))
new_data
}
#' Calculate impulse responses from a fable model
#'
#' Simulates future paths from a dataset using a fitted model. Innovations are
#' sampled by the model's assumed error distribution. If `bootstrap` is `TRUE`,
#' innovations will be sampled from the model's residuals. If `new_data`
#' contains the `.innov` column, those values will be treated as innovations.
#'
#' @inheritParams forecast.ETS
#' @param x A fitted model.
#' @param impulse A character string specifying the name of the variable that is shocked (the impulse variable).
#' @param orthogonal If TRUE, orthogonalised impulse responses will be computed.
#'
#' @export
IRF.VAR <- function(x, new_data, specials, impulse = NULL, orthogonal = FALSE, ...) {
# Zero out end of data
x$last_obs[seq_along(x$last_obs)] <- 0
# Remove regressors
n_ar <- x$spec$p*ncol(x$coef)
if(nrow(x$coef) > n_ar) {
x$coef[seq(n_ar + 1, nrow(x$coef)),] <- 0
}
# Add shocks
if (".impulse" %in% names(new_data)) {
names(new_data)[names(new_data) == ".impulse"] <- ".innov"
} else {
new_data$.innov <- matrix(0, nrow = nrow(new_data), ncol = ncol(x$last_obs),
dimnames = dimnames(x$last_obs))
new_data$.innov[1, impulse] <- 1
}
# Orthogonalised shocks
if(orthogonal) {
# Use Cholesky decomposition to orthogonalise the shocks / innovations
new_data$.innov <- new_data$.innov %*% chol(x$fit$sigma2[[1L]])
}
irf <- generate(x, new_data, specials)
irf[colnames(x$coef)] <- split(irf$.sim, col(irf$.sim))
irf$.innov <- irf$.sim <- NULL
irf
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.