R/lt_model_lq.R

Defines functions find_my_case lthat.logquad lt_model_lq

Documented in find_my_case lthat.logquad lt_model_lq

#===============================================================================
# Wrap model life tables methods
# Ilya Kashnitsky, ilya.kashnitsky@gmail.com
#===============================================================================

# Log-Quad family (Wilmoth) -----------------------------------------------
# Author: Marius D. Pascariu
# License: GNU General Public License v3.0
# Last update: Tue Dec  4 22:17:06 2018
# https://github.com/mpascariu/MortalityEstimate/blob/master/R/fun_Wilmoth.R


#' Estimate Wilmoth Model Life Table
#'
#' Construct model life tables based on the Log-Quadratic (Wilmoth) estimates
#' with various choices of 2 input parameters:
#' \code{q0_5, q0_1, q15_45, q15_35} and \code{e0}. There are 8 possible
#' combinations (see examples below).
#'
#' @details Due to limitations of the R language the notation for probability
#' of dying \code{nqx} is written \code{qx_n}, where \code{x} and \code{n} are
#' integers. For example \code{45q15} is represented as \code{q45_15}.
#' @note This function is ported from \code{MortalityEstimate::wilmothLT} experimental package by Marius Pascariu. The package is no longer maintained. The latest version can be found here: \url{https://github.com/mpascariu/MortalityEstimate}
#' @param Sex Choose the sex of the population. This choice defines the use
#' of a corresponding Log-Quadratic (\code{wilmoth})
#'  model fitted for the whole Human Mortality Database (as of Dec 2019,
#'  there are 968 life tables for each sex).
#' The following options are available: \itemize{
#'   \item{\code{"b"}} -- Both sex;
#'   \item{\code{"f"}} -- Females;
#'   \item{\code{"m"}} -- Males.
#'   }
#' @param fitted_logquad Optional, defaults to \code{NULL}. An object of class
#'  \code{wilmoth}. If full HMD is not enough, one
#'  can fit a Log-Quadratic (\url{https://github.com/mpascariu/MortalityEstimate}) model
#'  based on any other collection  of life tables;
#' @param q0_5 5q0. The probability that a new-born will die during the
#' subsequent 5 years;
#' @param q0_1 1q0. The probability that a life aged 0 will die during the
#' following year;
#' @param q15_45 45q15. The probability that a life aged 15 will die during
#' the subsequent 45 years;
#' @param q15_35 35q15. The probability that a life aged 15 will die during
#' the subsequent 35 years;
#' @param e0 Life expectancy at birth;

#' @param radix Life table radix. Default: 10^5;
#' @param tol Tolerance level for convergence. The tolerance level, is relevant
#' for case 7 and 8 (e0 and 45q15 or 35q15 are known);
#' @param maxit Maximum number of iterations allowed. Default: 100;
#' @inheritParams lt_abridged
#' @return The output is of class \code{lt_model_lq} with the components:
#'  \item{lt}{ Life table matching given inputs}
#'  \item{values}{ Associated values of \code{q0_5, q0_1, q15_45, q15_35}
#' and \code{e0}.}
#' @importFrom stats uniroot
#' @examples
#'
#' # Build life tables with various choices of 2 input parameters
#' # case 1: Using 5q0 and e0
#' L1 <- lt_model_lq(Sex = "b", q0_5 = 0.05, e0 = 65)
#' L1
#' ls(L1)
#'
#' L1f <- lt_model_lq(Sex = "f", q0_5 = 0.05, e0 = 65)
#' L1m <- lt_model_lq(Sex = "m", q0_5 = 0.05, e0 = 65)
#'
#' # case 2: Using 5q0 and 45q15
#' L2 <- lt_model_lq(Sex = "b", q0_5 = 0.05, q15_45 = 0.2)
#'
#' # case 3: Using 5q0 and 35q15
#' L3 <- lt_model_lq(Sex = "b", q0_5 = 0.05, q15_35 = 0.125)
#'
#' # case 4: Using 1q0 and e0
#' L4 <- lt_model_lq(Sex = "b", q0_1 = 0.01, e0 = 65)
#'
#' # case 5: Using 1q0 and 45q15
#' L5 <- lt_model_lq(Sex = "b", q0_1 = 0.05, q15_45 = 0.2)
#'
#' # case 6: Using 1q0 and 35q15
#' L6 <- lt_model_lq(Sex = "b", q0_1 = 0.05, q15_35 = 0.125)

#'
#' # case 7: Using 45q15 and e0
#' L7 <- lt_model_lq(Sex = "b", q15_45 = 0.125, e0 = 65)
#'
#' # case 8: Using 35q15 and e0
#' L8 <- lt_model_lq(Sex = "b", q15_35 = 0.15, e0 = 65)
#'
#' @export
lt_model_lq <- function(
                        Sex, # has to be specified always
                        fitted_logquad = NULL,
                        q0_5 = NULL,
                        q0_1 = NULL,
                        q15_45 = NULL,
                        q15_35 = NULL,
                        e0 = NULL,
                        radix = 1e5,
                        tol = 1e-9,
                        maxit = 200,
                        axmethod = "pas",
                        a0rule = "ak",
                        IMR = NA,
                        region = "w",
                        mod = TRUE,
                        SRB = 1.05) {
  # TR: strict name checking of new args
  axmethod <- match.arg(axmethod, choices = c("pas","un"))
  a0rule   <- match.arg(a0rule, choices =  c("ak","cd"))
  Sex      <- match.arg(Sex, choices = c("m","f","b"))
  region   <- match.arg(region, choices =c("w","n","s","e"))

  # check if an optional fitted_logquad is specified
  if(is.null(fitted_logquad)){

    if(Sex == "b"){
      fitted_logquad <- DemoTools::fitted_logquad_b
    }
    if(Sex == "f"){
      fitted_logquad <- DemoTools::fitted_logquad_f
    }
    if(Sex == "m"){
      fitted_logquad <- DemoTools::fitted_logquad_m
    }
  }

  # TR: I see this is why you want NULLs, but maybe there's
  # a better way? Rather then passing in values, we can pass
  # in logicals. Looking inside find_my_case I see that it
  # just composes vectors of length 5. We can mimick this like so.
  par_ind <- c(q0_5 = !is.null(q0_5),
               q0_1 = !is.null(q0_1),
               q15_45 = !is.null(q15_45),
               q15_35 = !is.null(q15_35),
               e0 = !is.null(e0))
  my_case <- find_my_case(par_ind = par_ind)

  cf      <- coef(fitted_logquad)
  x       <- fitted_logquad$input$x

  # Cases 1-3:  5q0 is known, plus e0, 45q15 or 45q15
  # TR: functions should have all parameters passed in.
  if (my_case %in% c("C1", "C2", "C3")) {
    if (my_case == "C1"){
      fun.k <- function(k, cf, x, q0_5, radix, Sex, par2, axmethod, a0rule, IMR, mod) {
        lthat.logquad(coefs = cf,
                      x = x,
                      q0_5 = q0_5,
                      k = k,
                      radix = radix,
                      Sex = Sex,
                      axmethod = axmethod,
                      a0rule = a0rule,
                      IMR = IMR,
                      mod = mod)$lt$ex[1] - par2
      }
      par2 <- e0
    }
    if (my_case == "C2"){
      fun.k <- function(k, cf, x, q0_5, radix, Sex, par2, axmethod, a0rule, IMR, mod) {
        lt <- lthat.logquad(coefs = cf,
                            x = x,
                            q0_5 = q0_5,
                            k = k,
                            radix = radix,
                            Sex = Sex,
                            axmethod = axmethod,
                            a0rule = a0rule,
                            IMR = IMR,
                            mod = mod)$lt
        (1 - (lt[lt$Age == 60, "lx"] / lt[lt$Age == 15, "lx"])) - par2
      }
      par2 <- q15_45
    }
    if (my_case == "C3"){
      fun.k <- function(k, cf, x, q0_5, radix, Sex, par2, axmethod, a0rule, IMR, mod) {
        lt <- lthat.logquad(coefs = cf,
                            x = x,
                            q0_5 = q0_5,
                            k = k,
                            radix = radix,
                            Sex = Sex,
                            axmethod = axmethod,
                            a0rule = a0rule,
                            IMR = IMR,
                            mod = mod)$lt
        (1 - (lt[lt$Age == 50, "lx"] / lt[lt$Age == 15, "lx"])) - par2
      }
      par2 <- q15_35
    }

    kroot <- uniroot(f = fun.k,
                     interval = c(-10, 10),
                     cf = cf,
                     x = x,
                     q0_5 = q0_5,
                     radix = radix,
                     Sex = Sex,
                     axmethod = axmethod,
                     a0rule = a0rule,
                     IMR = IMR,
                     mod = mod,
                     par2 = par2)$root
    tmp  <- lthat.logquad(coefs = cf,
                          x = x,
                          q0_5 = q0_5,
                          k = kroot,
                          radix = radix,
                          Sex = Sex,
                          axmethod = axmethod,
                          a0rule = a0rule,
                          IMR = IMR,
                          mod = mod)
  }

  # Cases 4-6: 1q0 is known, plus e0, 45q15 or 35q15;
  # after finding 5q0 (assume k=0, but it doesn't matter), these become Cases 1-3

  if (my_case %in% c("C4","C5","C6") ) {
    fun.q0_5a <- function(q0_5, q0_1, cf, x, radix, Sex, axmethod, a0rule, IMR, mod){
      lthat.logquad(coefs = cf,
                    x = x,
                    q0_5 = q0_5,
                    k = 0,
                    radix = radix,
                    Sex = Sex,
                    axmethod = axmethod,
                    a0rule = a0rule,
                    IMR = IMR,
                    mod = mod)$lt$nqx[1] - q0_1
    }
    q0_5  <- uniroot(f = fun.q0_5a, interval = c(1e-5, 0.8),
                     cf = cf,
                     x = x,
                     q0_1 = q0_1,
                     radix = radix,
                     Sex = Sex,
                     axmethod = axmethod,
                     a0rule = a0rule,
                     IMR = IMR,
                     mod = mod
                     )$root
  }

  if (my_case == "C4"){
    tmp <- lt_model_lq(fitted_logquad = fitted_logquad,
                       q0_5 = q0_5,
                       e0 = e0,
                       q0_1 = NULL,
                       q15_35 = NULL,
                       q15_45 = NULL,
                       Sex = Sex,
                       axmethod = axmethod,
                       a0rule = a0rule,
                       IMR = IMR,
                       mod = mod,
                       radix = radix,
                       tol = tol)
  }
  if (my_case == "C5"){
    tmp <- lt_model_lq(fitted_logquad = fitted_logquad,
                       q0_1 = NULL,
                       q15_35 = NULL,
                       e0 = NULL,
                       q0_5 = q0_5,
                       q15_45 = q15_45,
                       Sex = Sex,
                       axmethod = axmethod,
                       a0rule = a0rule,
                       IMR = IMR,
                       mod = mod,
                       radix = radix,
                       tol = tol)
  }
  if (my_case == "C6"){
    tmp <- lt_model_lq(fitted_logquad = fitted_logquad,
                       q0_1 = NULL,
                       q15_45 = NULL,
                       e0 = NULL,
                       q0_5 = q0_5,
                       q15_35 = q15_35,
                       Sex = Sex,
                       axmethod = axmethod,
                       a0rule = a0rule,
                       IMR = IMR,
                       mod = mod,
                       radix = radix,
                       tol = tol)
  }

  # Case 7 and 8: e0 and 45q15 or 35q15 are known; must find both 5q0 and k
  if (my_case %in% c("C7", "C8")) {
    k    <- q0_5 <- 0
    iter <- crit <- 1

    fun.q0_5b = function(q0_5,
                         cf = cf,
                         x,
                         k,
                         radix,
                         Sex,
                         axmethod = "pas",
                         a0rule ="ak",
                         IMR = NA,
                         mod = TRUE,
                         e0) {
      lthat.logquad(coefs = cf,
                    x = x,
                    q0_5 = q0_5,
                    k = k,
                    radix,
                    Sex = Sex,
                    axmethod = axmethod,
                    a0rule = a0rule,
                    IMR = IMR,
                    mod = mod)$lt$ex[1] - e0
    }
    while (crit > tol & iter <= maxit) {
      k.old    <- k
      q0_5.old <- q0_5
      # Get new 5q0 from e0 given k (case 9 from MortalityEstimate::wilmothLT)


      q0_5i <- uniroot(f = fun.q0_5b,
                       interval = c(1e-4, 0.8),
                       x = x,
                       cf = cf,
                       k = k,
                       radix = radix,
                       Sex = Sex,
                       axmethod = axmethod,
                       a0rule = a0rule,
                       IMR = IMR,
                       mod = mod,
                       e0 = e0)$root
      # get new q0_5
      q0_5 <- lthat.logquad(
        coefs = cf,
        x = x,
        q0_5 = q0_5i,
        k = k,
        radix = radix,
        Sex = Sex,
        axmethod = axmethod,
        a0rule = a0rule,
        IMR = IMR,
        mod = mod
      )$values$q0_5
      # Get k from 45q15 or 35q15 assuming 5q0
      if (my_case == "C7"){
        tmp = lt_model_lq(fitted_logquad = fitted_logquad,
                          q0_5 = q0_5,
                          q15_45 = q15_45,
                          Sex = Sex,
                          axmethod = axmethod,
                          a0rule = a0rule,
                          IMR = IMR,
                          mod = mod,
                          tol = tol,
                          radix = radix)
      }
      if (my_case == "C8"){
        tmp = lt_model_lq(fitted_logquad = fitted_logquad,
                          q0_5 = q0_5,
                          q15_35 = q15_35,
                          Sex = Sex,
                          axmethod = axmethod,
                          a0rule = a0rule,
                          IMR = IMR,
                          mod = mod,
                          tol = tol,
                          radix = radix
                          )
      }
      k    <- tmp$values$k
      crit <- sum(abs(c(k, q0_5) - c(k.old, q0_5.old)))
      iter <- iter + 1
    }
    if (iter > maxit) {
      warning("number of iterations reached maximum without convergence",
              call. = FALSE)
    }
  }

  # Return life table plus values of the 6 possible inputs
  out = list(lt = tmp$lt,
             values = tmp$values)
  out = structure(class = "lt_model_lq", out)
  return(out)
}


#' Estimated life table using the log-quadratic model
#'
#' @param coefs Estimated coefficients
#' @inheritParams lt_model_lq
#' @keywords internal
#' @export
lthat.logquad <- function(coefs,
                          x,
                          q0_5,
                          k,
                          radix,
                          axmethod = "pas",
                          a0rule = "ak",
                          Sex = "m",
                          IMR = NA,
                          region = "w",
                          mod = TRUE,
                          SRB = 1.05){
  axmethod <- match.arg(axmethod, choices = c("pas","un"))
  a0rule   <- match.arg(a0rule, choices =  c("ak","cd"))
  Sex      <- match.arg(Sex, choices = c("m","f","b"))
  region   <- match.arg(region, choices =c("w","n","s","e"))

  h     <- log(q0_5)
  mx    <- with(as.list(coefs), exp(ax + bx*h + cx*h^2 + vx*k))
  # estimate ax
  age_int <- age2int(Age = x, OAG = TRUE, OAvalue = NA)

  # ruh roh, we need to do something about Sex = "b"
  ax    <- lt_id_morq_a(
    nMx = mx,
    Age = x,
    AgeInt = age_int,
    axmethod = axmethod,
    a0rule = a0rule,
    # This is temporary
    Sex = Sex,
    IMR = IMR,
    region = region,
    mod = mod,
    SRB = SRB)

  # qx from mx and estimated ax
  qx <- lt_id_ma_q(nMx = mx, nax = ax, AgeInt = age_int, IMR = NA)
  # Force 4q1 (and thus 4m1) to be consistent with 1q0 and 5q0
  qx[2] <- 1 - (1 - q0_5)/(1 - qx[1])
  mx[2] <- lt_id_qa_m(nqx = qx, nax = ax, AgeInt = age_int)[2]
  names(mx) = names(qx) <- rownames(coefs)

  LT     <- lt_abridged(
    Age = x,
    nMx = mx,
    radix = radix,
    lt_abridged = age_int,
    axmethod = axmethod,
    a0rule = a0rule,
    Sex = Sex,
    IMR = IMR,
    region = region,
    mod = mod,
    SRB = SRB)
  e0     <- LT$ex[1]
  q0_1   <- LT$nqx[1]
  q15_45 <- 1 - LT[LT$Age == 60, "lx"] / LT[LT$Age == 15, "lx"]
  q15_35 <- 1 - LT[LT$Age == 50, "lx"] / LT[LT$Age == 15, "lx"]
  values <- data.frame(k, q0_1, q0_5, q15_35, q15_45, e0, row.names = "")

  # Exit
  out <- list(lt = LT, values = values)
  return(out)
}


#' Function that determines the case/problem we have to solve
#' It also performs some checks
#' @details \code{par_ind} should consist in logicals in the following order: \code{q0_5}, \code{q0_1}, \code{q15_45}, \code{q15_35}, \code{e0}. This is faithfully constructed in calling functions as required.
#' @param  par_ind logical vector of length 5
#' @keywords internal

find_my_case <- function(par_ind) {
  # need to reverse logicals to minimize code changes below

  # TR: more robust would be to pick out by name:
  if (sum(par_ind[c('q0_1', 'q0_5')]) == 2) {
    stop("cannot have both 'q0_1' and 'q0_5' as inputs", call. = FALSE)
  }

  # TR: changed logic
  if (sum(par_ind[c('q15_45', 'q15_35')]) == 2) {
    stop("cannot have both 'q15_45' and 'q15_35' as inputs", call. = FALSE)
  }

  # Test that exactly two inputs are non-null
  if (sum(par_ind) != 2) {
    stop("must have exactly two inputs", call. = FALSE)
  }

  case <- "Invalid par combo"
  # There are 8 cases:  "5 choose 2" = 10, but we disallow two cases
  # (1q0 and 5q0, or 45q15 and 35q15)
  # 'q0_5'  'q0_1'  'q15_45'  'q15_35'  'e0'
  if (sum(par_ind[ c('q0_5', 'e0')]) == 2 ) case = "C1"
  if (sum(par_ind[c('q0_5','q15_45')]) == 2) case = "C2"
  if (sum(par_ind[c('q0_5','q15_35')]) == 2) case = "C3"

  if (sum(par_ind[ c('q0_1', 'e0')]) == 2 ) case = "C4"
  if (sum(par_ind[c('q0_1','q15_45')]) == 2) case = "C5"
  if (sum(par_ind[c('q0_1','q15_35')]) == 2) case = "C6"

  if (sum(par_ind[ c('q15_45', 'e0')]) == 2 ) case = "C7"
  if (sum(par_ind[ c('q15_35', 'e0')]) == 2 ) case = "C8"

  stopifnot(case != "Invalid parameter combo")

  return(case)
}
timriffe/DemoTools documentation built on Oct. 14, 2024, 12:53 p.m.