hello: Hello, World!

Description Usage Examples

Description

Prints 'Hello, world!'.

Usage

1

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#연산
A=matrix(c(1,-1,4,-1,1,3,4,3,2),nrow=3,ncol=3, byrow=TRUE)
B=matrix(c(3,-2,4,-1,1,0,4,0,5),nrow=3,ncol=3, byrow=TRUE)
X=matrix(c(1,-2,4),nrow=3,ncol=3, byrow=TRUE)
Y=matrix(c(3,2,1),nrow=3,ncol=3, byrow=TRUE)
matrix multiple percent*percent
matrix change t(x)

#암거북이
apply(TT,2,mean)
apply(TT,2,var)
apply(TT,2,sd)
sqrt(var(TT)*nrow(TT)-1)/nrow(TT))

#주성분분석
setwd("d:/")
TP <- read.csv("temp.csv")
head(TP)
x<-TP[,c(2:3)]
pr<-princomp(x)
summary(pr)
pr$scores[,1:2]
library(graphics)
biplot(pr)


#회귀분석
yj=read.csv("data2.csv")
head(yj)
y=yj$y
x1=yj$x1
x2=yj$x2
x=cbind(1,x1,x2)
theta=c(0,0,0)
m=nrow(x)
cost=sum(((x:*:theta)-y)^2)/(2*m) < fix percent
alpha=0.01
iterations=10000
for(i in 1:iterations){
theta[1]=theta[1]-alpha*(1/m)*sum((x:*:theta)-y) < fix percent
theta[2]=theta[2]-alpha*(1/m)*sum(((x:*:theta)-y)*x[,2])
theta[3]=theta[3]-alpha*(1/m)*sum(((x:*:theta)-y)*x[,3])
}
theta[1]
theta[2]
theta[3]

B=matrix(c(379.63,-188.69,-188.68,197.32),nc=2)
lambda=eigen(B)
lambda$values
[1] 498.02514  78.92486
lambda$vectors
           [,1]      [,2]
[1,]  0.8470483 0.5314956
[2,] -0.5315159 0.8470610
lambda$vectors[,1]
[1]  0.8470483 -0.5315159
lambda$vectors[,2]
[1] 0.5314956 0.8470610


#보스턴 ridge, lasso
library(pastecs)
library(glmnet)
library(lasso2)


Boston=read.csv(file.choose())
head(Boston)

#결측값
outlier<-c(which(Boston$rm<6.5& Boston$medv==50))
Boston[outlier,]
plot(medv~rm,data=Boston)
points(Boston[outlier,]$rm,Boston[outlier,]$medv,pch=16,col='red')
BostonOut=Boston[-outlier,] #Outlier 삭제한 Data
set.seed(97)
sample.no=sample(1:nrow(BostonOut),nrow(BostonOut)*0.8)
BostonOut.train=BostonOut[sample.no,]
BostonOut.test=BostonOut[-sample.no,]
fit.Case1<-lm(medv~.,data=BostonOut.train)
summary(fit.Case1)

sqrt(mean((fit.Case1$residuals)^2))
res.Case1<-BostonOut.test$medv-predict(fit.Case1,newdata=BostonOut.test)
1-sum(res.Case1)^2/sum((BostonOut.test$medv-mean(BostonOut.test$medv))^2)
sqrt(mean(res.Case1^2))
cor(Boston)
fit3.var<-lm(log(medv)~lstat+rm+ptratio, data=BostonOut.train)
summary(fit3.var)
sum( (BostonOut.train$medv - mean(BostonOut.train$medv))^2 )
sqrt(mean((exp(fit3.var$fitted.values) - BostonOut.train$medv)^2 ))

1 - sum( (BostonOut.train$medv - exp(fit3.var$fitted.values))^2 ) / sum( (BostonOut.train$medv - mean(BostonOut.train$medv))^2 )
sqrt(mean( (exp(fit3.var$fitted.values) - BostonOut.train$medv)^2 ))

# train data로 구한 R squared 와 RMSE
# 종속변수를 자연로그 변환 했기 때문에 R squared와 RMSE는 다시 지수 취한 후 계산해야 한다.
1 - sum( (BostonOut.train$medv - exp(fit3.var$fitted.values))^2 ) / sum( (BostonOut.train$medv - mean(BostonOut.train$medv))^2 )
sqrt(mean( (exp(fit3.var$fitted.values) - BostonOut.train$medv)^2 ))


# test data로 구한 R squared 와 RMSE
1 - sum( (BostonOut.test$medv - exp(predict(fit3.var, newdata = BostonOut.test)))^2 ) / sum( (BostonOut.test$medv - mean(BostonOut.test$medv))^2 )
sqrt(mean( (BostonOut.test$medv - exp(predict(fit3.var, newdata = BostonOut.test)))^2 ))
AIC(fit3.var)

predict(fit.Case1,newdata=BostonOut.test)
#RAD 범주화
BostonCat=BostonOut
BostonCat$rad=as.factor(BostonCat$rad)
set.seed(32)
sample.no=sample(1:nrow(BostonCat),nrow(BostonCat)*0.8)
BostonCat.train=BostonCat[sample.no,]
BostonCat.test=BostonCat[-sample.no,]
head(BostonCat)
fit.Cat <- lm(log(medv) ~ . + I(rm^2)+I(nox^2)+log(lstat)+log(dis) - rm - nox - lstat - dis, data= BostonCat.train)
summary(fit.Cat)

# 훈련집합의 R squared와 RMSE 계산

1 - sum( (BostonCat.train$medv - exp(fit.Cat$fitted.values))^2 ) / sum( (BostonCat.train$medv - mean(BostonCat.train$medv))^2 )
sqrt(mean( (exp(fit.Cat$fitted.values) - BostonCat.train$medv)^2 ))
fit.Cat<-lm(log(medv)~.+I(rm^2)+log(lstat)+log(dis)-rm-nox-lstat-dis, data=BostonCat.train)


# OLS, Stepwise, Ridge, Lasso
rad2 <- ifelse(BostonCat$rad == 2, 1, 0)
rad3 <- ifelse(BostonCat$rad == 3, 1, 0)
rad4 <- ifelse(BostonCat$rad == 4, 1, 0)
rad5 <- ifelse(BostonCat$rad == 5, 1, 0)
rad6 <- ifelse(BostonCat$rad == 6, 1, 0)
rad7 <- ifelse(BostonCat$rad == 7, 1, 0)
rad8 <- ifelse(BostonCat$rad == 8, 1, 0)
rad24 <- ifelse(BostonCat$rad == 24, 1, 0)
BostonTrans <- cbind(BostonOut, rad2, rad3, rad4, rad5, rad6, rad7, rad8, rad24)

head(BostonTrans)


# 변수변환  : rm^2, nox^2, ln(lstat), ln(dis)
BostonTrans <- with(BostonTrans, cbind(BostonTrans, rm2=rm^2, nox2=nox^2, llstat=log(lstat), ldis=log(dis)))
head(BostonTrans)
str(BostonTrans)

# set.seed(32) 로 구한 sample.no 그대로 사용하여 학습자료 분할
BostonTrans.train <- BostonTrans[sample.no,]
BostonTrans.test <- BostonTrans[-sample.no,]

# OLS 훈련
fit.Trans1 <- lm(log(medv) ~ .-rm-rad-nox-lstat-dis , data= BostonTrans.train)
summary(fit.Trans)
1 - sum( (BostonTrans.train$medv - exp(fit.Trans1$fitted.values))^2 ) / sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 )
sqrt(mean( (exp(fit.Trans1$fitted.values) - BostonTrans.train$medv)^2 ))
# OLS 평가
fit.Trans2 <- lm(log(medv) ~ .-rm-rad-nox-lstat-dis , data= BostonTrans.test)
summary(fit.Trans2)
1 - sum( (BostonTrans.train$medv - exp(fit.Trans2$fitted.values))^2 ) / sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 )
sqrt(mean( (exp(fit.Trans2$fitted.values) - BostonTrans.train$medv)^2 ))

# Stepwise 훈련
fit.step1 <- step(fit.Trans1, direction = "both")
# 훈련집합의 R squared와 RMSE 계산
1 - sum( (BostonTrans.train$medv - exp(fit.step1$fitted.values))^2 ) / sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 )
sqrt(mean( (exp(fit.step1$fitted.values) - BostonTrans.train$medv)^2 ))

# Stepwise 평가
fit.step2 <- step(fit.Trans2, direction = "both")
# 평가집합의 R squared와 RMSE 계산
1 - sum( (BostonTrans.train$medv - exp(fit.step2$fitted.values))^2 ) / sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 )
sqrt(mean( (exp(fit.step2$fitted.values) - BostonTrans.train$medv)^2 ))

fit.cv.ridge <- cv.glmnet(as.matrix(BostonTrans.train[,-14]), log(BostonTrans.train$medv), alpha = 0)
grid <- seq(fit.cv.ridge$lambda.min, fit.cv.ridge$lambda.1se, length.out = 5)

#람다값지정되어있을때
#grid = 0.0001 0.0002 0.0003

#Ridge 훈련
fit.ridge1 <- glmnet(as.matrix(BostonTrans.train[,-14]), log(BostonTrans.train$medv), alpha = 0, lambda=grid)
head(fit.ridge1)
ridge.fitted.value <- predict(fit.ridge1, newx=as.matrix(BostonTrans.train[,-14]))
1 - colSums( (BostonTrans.train$medv - exp(ridge.fitted.value))^2 ) /  sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 ) # R squared
sqrt(colMeans( (exp(ridge.fitted.value) - BostonTrans.train$medv)^2 )) # RMSE
#Ridge 테스트
fit.ridge2 <- glmnet(as.matrix(BostonTrans.test[,-14]), log(BostonTrans.test$medv), alpha = 0, lambda=grid)
head(fit.ridge2)
ridge.fitted.value <- predict(fit.ridge2, newx=as.matrix(BostonTrans.train[,-14]))
1 - colSums( (BostonTrans.train$medv - exp(ridge.fitted.value))^2 ) /  sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 ) # R squared
sqrt(colMeans( (exp(ridge.fitted.value) - BostonTrans.train$medv)^2 )) # RMSE
#lasso 훈련
fit.lasso1 <- glmnet(as.matrix(BostonTrans.train[,-14]), log(BostonTrans.train$medv), alpha = 1, lambda=grid)
head(fit.lasso1)
ridge.fitted.value <- predict(fit.lasso1, newx=as.matrix(BostonTrans.train[,-14]))
1 - colSums( (BostonTrans.train$medv - exp(ridge.fitted.value))^2 ) /  sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 ) # R squared
sqrt(colMeans( (exp(ridge.fitted.value) - BostonTrans.train$medv)^2 )) # RMSE
#lasso 테스트
fit.lasso2 <- glmnet(as.matrix(BostonTrans.test[,-14]), log(BostonTrans.test$medv), alpha = 1, lambda=grid)
head(fit.lasso2)
ridge.fitted.value <- predict(fit.lasso2, newx=as.matrix(BostonTrans.train[,-14]))
1 - colSums( (BostonTrans.train$medv - exp(ridge.fitted.value))^2 ) /  sum( (BostonTrans.train$medv - mean(BostonTrans.train$medv))^2 ) # R squared
sqrt(colMeans( (exp(ridge.fitted.value) - BostonTrans.train$medv)^2 )) # RMSE
#여기까지



#gradient descent
xs=seq(0,4,len=20)
f=function(x){1.2*(x-2)^2+3.2}
plot(xs,f(xs),type="l", xlab="x", ylab=expression(1.2(x-2)^2+3.2))
grad=function(x){1.2*2*(x-2)}
lines(c(2,2), c(3,8), col="red", lty=2)
text(2.1,7, "Closed form solution", col="red", pos=4)
x=0.1
xtrace<-x
ftrace<-f(x)
stepFactor<-0.6
for(step in 1:100){
x<-x-stepFactor*grad(x)
xtrace<-c(xtrace,x)
ftrace<-c(ftrace,f(x))
}
lines(xtrace, ftrace, type="b",col="blue")
text(0.5,6, "Gradient descent", col="blue",pos=4)
print(x)


#결측치 평균 대체
data <- read.csv(file.choose())
mean_1 <- mean(data[,1], na.rm=TRUE) #1열 평균
data$열이름[is.na(data$열이름)] <- mean_1


#stepwise 과제용
stat.desc(concrete) #기술통계량
cor(concrete) #상관분석
fit.step <- step(CCS ~ Cement + FlyAsh + BFS + Water + Sp + CA, direction = "both")

tkwk6428/yjsc documentation built on June 10, 2019, 12:28 a.m.