#' @export
#'
#' @title F.run.passage.enh
#'
#' @description Estimate production by life stage and run for all days within a
#' date range.
#'
#' @param site The identification number of the site for which estimates are
#' required.
#'
#' @param taxon The species identifier indicating the type of fish of interest.
#' This is always \code{161980}; i.e., Chinook Salmon.
#'
#' @param run The text seasonal identifier. This is a one of \code{"Spring"},
#' \code{"Fall"}, \code{"Late Fall"}, or \code{"Winter"}.
#'
#' @param min.date The start date for data to include. This is a text string in
#' the format \code{\%Y-\%m-\%d}, or \code{YYYY-MM-DD}.
#'
#' @param max.date The end date for data to include. Same format as
#' \code{min.date}.
#'
#' @param by A text string indicating the temporal unit over which daily
#' estimated catch is to be summarized. Can be one of \code{day},
#' \code{week}, \code{month}, \code{year}.
#'
#' @param output.file A text string indicating a prefix to append to all output.
#'
#' @param ci A logical indicating if 95\% bootstrapped confidence intervals
#' should be estimated along with passage estimates.
#'
#' @return Results from running the enhanced efficiency model fitting process
#' include \code{csv}s of efficiency trials missing a covariate, for each
#' \code{TrapPositionID} at a \code{subSiteID}. This prevents these
#' efficiency trials from inclusion in the model fitting process.
#'
#' Each \code{TrapPositionID} also results in a series of plots depicting the
#' fitted temporal spline, at each point of the backwards-fitting process.
#' These could number many, depending on the number of covariates available
#' for possible exlcusion.
#'
#' Each \code{trapPositionID} also outputs a \code{png} containing model
#' fitting information, including plots of efficiency versus each considered
#' covariate, along with plotted temporal trends of each covariate against
#' time. Additional plots include the final fitted temporal spline (along
#' with an prediction "curve" derived from the available data), as well as a
#' final "plot" depicting model summary statistics, obtained via the
#' \code{summary} function against the logistic efficiency-trial model fits.
#'
#' Note that no passage estimates result from the fitting of enhanced
#' efficiency models. This is because bootstrapping does not occur, but also
#' because estimation of passage is not the goal of the model fitting process.
#' Use the regular function sequence; i.e., functions without the
#' \code{".enh"} to estimation passage for one-year intervals of interest.
#'
#' @section Functions Used to Fit Enhanced Efficiency Models:
#' Five programs make up the specialized procedure for fitting enhanced
#' efficiency models. This means actually compiling the data of efficiency
#' trials obtained over several years, and then fitting a generalized additive
#' model (GAM) to those data. All five programs have suffixes of
#' \code{".enh"}, and originated with the program versions without the suffix.
#' As such, they are very similar to the originals.
#'
#' The first, \code{run_passage.enh} corrals the fitting. It is different
#' from \code{run_passage} in that all of the passage summary that is usually
#' created has been suppressed. This is because there is no need to
#' bootstrap, once enhanced efficiency models have been obtained.
#'
#' The second, \code{get_release_data.enh} modifies the obtaining of release
#' data, so as to obtain astrological data and mean fork-length. It is very
#' similar to its originator.
#'
#' The third, \code{est_passage.enh}, corrals the data from
#' \code{get_release_data.enh} for use in \code{est_efficiency.enh}. It too
#' should be very similar to its originator.
#'
#' The fourth, \code{est_efficiency.enh}, ensures the calculation of weighted
#' averages for the three efficiency-trial covariates have to do with mean
#' fork-lengths, and percent of fishing performed at night, or while the moon
#' is up. It also emulates closely its originator.
#'
#' Finally, the fifth, \code{eff_model.enh}, fits the enhanced efficiency
#' models. It follows a backwards selection procedure, allowing for both
#' variable covariate selection, as well as variable temporal spline
#' complexity. It creates graphical output, for each trap, so as to provide
#' further hypothesis generation.
#'
#' @seealso \code{run_passage.enh}, \code{get_release_data},
#' \code{est_passage.enh}, \code{est_efficiency.enh}, \code{eff_model.enh}
#'
#' @examples
#' \dontrun{
#' # ---- Estimate passage on the American for the Fall run.
#' site <- 6000
#' taxon <- 161980
#' min.date <- "2010-12-07"
#' max.date <- "2011-06-02"
#' by <- "day"
#' output.file <- "Feather"
#' ci <- TRUE
#' }
F.run.passage.enh <- function( site, taxon, min.date, max.date, by, output.file, ci=TRUE ){
# site <- 12345
# taxon <- 161980
# min.date <- "2005-01-01"
# max.date <- "2005-06-30"
# by <- "week"
# output.file <- NA
# ci <- TRUE
# ---- Obtain necessary variables from the global environment.
fishingGapMinutes <- get("fishingGapMinutes",envir=.GlobalEnv)
passageRounder <- get("passageRounder",envir=.GlobalEnv)
# Check that times are less than 1 year apart
strt.dt <- as.POSIXct( min.date, format="%Y-%m-%d" )
end.dt <- as.POSIXct( max.date, format="%Y-%m-%d" )
run.season <- data.frame( start=strt.dt, end=end.dt )
dt.len <- difftime(end.dt, strt.dt, units="days")
#if( dt.len > 366 ) stop("Cannot specify more than 365 days in F.passage. Check min.date and max.date.")
# ---- Identify the type of passage report we're doing
assign("passReport","ALLRuns",envir=.GlobalEnv)
passReport <- get("passReport",envir=.GlobalEnv)
# ---- Start a progress bar
progbar <<- winProgressBar( "Production estimate for ALL runs", label="Fetching efficiency data" )
# ---- Fetch efficiency data
#release.df <- F.get.release.data( site, taxon, min.date, max.date )
setWinProgressBar( progbar, 0.1 , label=paste0("Fetching catch data, while using a ",round(fishingGapMinutes / 24 / 60,2),"-day fishing gap.") )
# ---- Fetch all efficiency data over all time. I need the visit.df StartTime and EndTime to calculate sun and moon
# ---- proportions, so move get.release.data to after the catch. Note I make get.release.data.enh to do this.
min.date2 <<- "1990-01-01"
max.date2 <<- "2017-05-22"
# ---- Fetch the catch and visit data
tmp.df <- F.get.catch.data( site, taxon, min.date2, max.date2, output.file )
catch.df <- tmp.df$catch # All positive catches, all FinalRun and lifeStages, inflated for plus counts. Zero catches (visits without catch) are NOT here.
visit.df <- tmp.df$visit # the unique trap visits. This will be used in a merge to get 0's later
catch.dfX <- catch.df # save for a small step below. several dfs get named catch.df, so need to call this something else.
if( nrow(catch.df) == 0 ){
stop( paste( "No catch records between", min.date, "and", max.date, ". Check dates and taxon."))
}
# ---- I calculate mean forklength here and attach via an attribute on visit.df. This way, it gets into function
# ---- F.get.release.data.enh. Note I make no consideration of FinalRun, or anything else. I get rid of plus
# ---- count fish, and instances where forkLength wasn't measured. Note that I do not restrict to RandomSelection ==
# ---- 'yes'. Many times, if there are few fish in the trap, they'll just measure everything, and record a
# ---- RandomSelection == 'no'.
catch.df2 <- catch.df[catch.df$Unassd != "Unassigned" & !is.na(catch.df$forkLength),]
# ---- Get the weighted-mean forkLength, weighting on the number of that length of fish caught. Return a vector
# ---- of numeric values in millimeters, with entry names reflecting trapVisitIDs. Also get the N for weighting.
flVec <- sapply(split(catch.df2, catch.df2$trapVisitID), function(x) weighted.mean(x$forkLength, w = x$Unmarked))
flDF <- data.frame(trapVisitID=names(flVec),wmForkLength=flVec,stringsAsFactors=FALSE)
nVec <- aggregate(catch.df2$Unmarked,list(trapVisitID=catch.df2$trapVisitID),sum)
names(nVec)[names(nVec) == "x"] <- "nForkLength"
tmp <- merge(flDF,nVec,by=c("trapVisitID"),all.x=TRUE)
tmp <- tmp[order(as.integer(tmp$trapVisitID)),]
attr(visit.df,"fl") <- tmp
release.df.enh <<- F.get.release.data.enh( site, taxon, min.date2, max.date2, visit.df)
forEffPlots <- attr(release.df.enh,"forEffPlots")
if( nrow(release.df.enh) == 0 ){
stop( paste( "No efficiency trials between", min.date, "and", max.date, ". Check dates."))
}
# ---- Summarize catch data by trapVisitID X FinalRun X lifeStage. Upon return, catch.df has one line per combination of these variables
catch.df0 <- F.summarize.fish.visit( catch.df, 'unassigned' ) # jason - 5/20/2015 - we summarize over lifeStage, wrt to unassigned. 10/2/2015 - i think by 'unassigned,' i really mean 'unmeasured'???
catch.df1 <- F.summarize.fish.visit( catch.df, 'inflated' ) # jason - 4/14/2015 - we summarize over lifeStage, w/o regard to unassigned. this is what has always been done.
catch.df2 <- F.summarize.fish.visit( catch.df, 'assigned' ) # jason - 4/14/2015 - we summarize over assigned. this is new, and necessary to break out by MEASURED, instead of CAUGHT.
catch.df3 <- F.summarize.fish.visit( catch.df, 'halfConeAssignedCatch' ) # jason - 1/14/2016
catch.df4 <- F.summarize.fish.visit( catch.df, 'halfConeUnassignedCatch' ) # jason - 1/14/2016
catch.df5 <- F.summarize.fish.visit( catch.df, 'assignedCatch' ) # jason - 1/14/2016
catch.df6 <- F.summarize.fish.visit( catch.df, 'unassignedCatch' ) # jason - 1/14/2016
catch.df7 <- F.summarize.fish.visit( catch.df, 'modAssignedCatch' ) # jason - 1/14/2016
catch.df8 <- F.summarize.fish.visit( catch.df, 'modUnassignedCatch' ) # jason - 1/14/2016
# ---- Compute the unique runs we need to do
runs <- unique(c(catch.df1$FinalRun,catch.df2$FinalRun)) # get all instances over the two df. jason change 4/17/2015 5/21/2015: don't think we need to worry about catch.df0.
runs <- runs[ !is.na(runs) ]
cat("\nRuns found between", min.date, "and", max.date, ":\n")
print(runs)
# ---- Print the number of non-fishing periods
cat( paste("\nNumber of non-fishing intervals at all traps:", sum(visit.df$TrapStatus == "Not fishing"), "\n\n"))
# ********
# Loop over runs
ans <- lci <- uci <- matrix(0, 1, length(runs))#matrix(0, length(lstages), length(runs))
dimnames(ans)<-list('All',runs)#list(lstages, runs)
out.fn.roots <- NULL
for( j in 1:1){#length(runs) ){
assign("run.name",runs[j],envir=.GlobalEnv)
run.name <- get("run.name",envir=.GlobalEnv)
# jason puts together the catches based on total, unassigned, assigned.
assd <- catch.df2[catch.df2$Unassd != 'Unassigned' & catch.df2$FinalRun == run.name,c('trapVisitID','lifeStage','n.tot','mean.fl','sd.fl')]
colnames(assd) <- c('trapVisitID','lifeStage','n.Orig','mean.fl.Orig','sd.fl.Orig')
catch.dfA <- merge(catch.df1,assd,by=c('trapVisitID','lifeStage'),all.x=TRUE)
unassd <- catch.df0[catch.df0$FinalRun == run.name,c('trapVisitID','lifeStage','n.tot')]
colnames(unassd) <- c('trapVisitID','lifeStage','n.Unassd')
# jason adds 6/7/2015 to throw out unassd counts from different runs that were creeping in.
catch.small <- catch.dfX[catch.dfX$Unassd == 'Unassigned' & catch.dfX$FinalRun == run.name,c('trapVisitID','lifeStage','Unmarked','Unassd')]
if(nrow(catch.small) > 0){
catch.small.tot <- aggregate(catch.small$Unmarked,list(trapVisitID=catch.small$trapVisitID,lifeStage=catch.small$lifeStage),sum)
names(catch.small.tot)[names(catch.small.tot) == 'x'] <- 'Unmarked'
preunassd <- merge(unassd,catch.small.tot,by=c('trapVisitID','lifeStage'),all.x=TRUE)
unassd <- preunassd[preunassd$n.Unassd == preunassd$Unmarked,]
unassd$Unmarked <- NULL
}
catch.df <- merge(catch.dfA,unassd,by=c('trapVisitID','lifeStage'),all.x=TRUE)
# jason brings halfcone counts along for the ride 1/14/2016 -- only for run_passage, and not run lifestage?
names(catch.df3)[names(catch.df3) == 'n.tot'] <- 'halfConeAssignedCatch'
names(catch.df4)[names(catch.df4) == 'n.tot'] <- 'halfConeUnassignedCatch'
names(catch.df5)[names(catch.df5) == 'n.tot'] <- 'assignedCatch'
names(catch.df6)[names(catch.df6) == 'n.tot'] <- 'unassignedCatch'
names(catch.df7)[names(catch.df7) == 'n.tot'] <- 'modAssignedCatch'
names(catch.df8)[names(catch.df8) == 'n.tot'] <- 'modUnassignedCatch'
catch.df <- merge(catch.df,catch.df3[,c('trapVisitID','lifeStage','FinalRun','halfConeAssignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df4[,c('trapVisitID','lifeStage','FinalRun','halfConeUnassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df5[,c('trapVisitID','lifeStage','FinalRun','assignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df6[,c('trapVisitID','lifeStage','FinalRun','unassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df7[,c('trapVisitID','lifeStage','FinalRun','modAssignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
catch.df <- merge(catch.df,catch.df8[,c('trapVisitID','lifeStage','FinalRun','modUnassignedCatch')],by=c('trapVisitID','lifeStage','FinalRun'),all.x=TRUE)
#theSumsBefore <<- accounting(catch.df,"byRun")
catch.df <- catch.df[order(catch.df$trapPositionID,catch.df$batchDate),]
cat(paste(rep("*",80), collapse=""))
tmp.mess <- paste("Processing ", run.name)
cat(paste("\n", tmp.mess, "\n"))
cat(paste(rep("*",80), collapse=""))
cat("\n\n")
progbar <- winProgressBar( tmp.mess, label="Run processing" )
barinc <- 1 / (length(runs) * 6)
assign( "progbar", progbar, pos=.GlobalEnv )
indRun <- (catch.df$FinalRun == run.name ) & !is.na(catch.df$FinalRun) # Don't need is.na clause. FinalRun is never missing here.
# ---- If we caught this run, compute passage estimate.
if( any( indRun ) ){ # 2/25/2016. jason observes that this should probably check if we have at least one caught fish --- and not all zeros.
# old - catch.df.ls <- catch.df[ indRun & indLS, c("trapVisitID", "FinalRun", "lifeStage", 'n.Orig','mean.fl.Orig','sd.fl.Orig',"n.tot", "mean.fl", "sd.fl","n.Unassd")]
catch.df.ls <- catch.df[ indRun, c("trapVisitID", "FinalRun", "lifeStage",'n.Orig','mean.fl.Orig','sd.fl.Orig',"n.tot", "mean.fl", "sd.fl","n.Unassd",'halfConeAssignedCatch','halfConeUnassignedCatch','assignedCatch','unassignedCatch','modAssignedCatch','modUnassignedCatch')]
# ---- Merge in the visits to get zeros
catch.df.ls <- merge( visit.df, catch.df.ls, by="trapVisitID", all.x=T )
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
# ---- Update the constant variables. Missing n.tot when trap was fishing should be 0.
catch.df.ls$FinalRun[ is.na(catch.df.ls$FinalRun) ] <- run.name
catch.df.ls$lifeStage <- "All" # emulate passage behavior here
catch.df.ls$n.tot[ is.na(catch.df.ls$n.tot) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$n.Orig[ is.na(catch.df.ls$n.Orig) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$n.Unassd[ is.na(catch.df.ls$n.Unassd) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$halfConeAssignedCatch[ is.na(catch.df.ls$halfConeAssignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$halfConeUnassignedCatch[ is.na(catch.df.ls$halfConeUnassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$assignedCatch[ is.na(catch.df.ls$assignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$unassignedCatch[ is.na(catch.df.ls$unassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$modAssignedCatch[ is.na(catch.df.ls$modAssignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
catch.df.ls$modUnassignedCatch[ is.na(catch.df.ls$modUnassignedCatch) & (catch.df.ls$TrapStatus == "Fishing") ] <- 0
# ---- Update progress bar
out.fn.root <- paste0(output.file, run.name)
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
# # jason add 2/25/2016 -- deal with traps with all zero fish.
# # see if we have non-zero fish for a trap, given the lifestage and run.
# theSums <- tapply(catch.df.ls[!is.na(catch.df.ls$n.Orig),]$n.Orig,list(catch.df.ls[!is.na(catch.df.ls$n.Orig),]$trapPositionID),FUN=sum)
# theZeros <- names(theSums[theSums == 0])
# catch.df.ls <- catch.df.ls[!(catch.df.ls$trapPositionID %in% theZeros),]
# ---- Set these attributes so they can be passed along.
attr(catch.df.ls,"min.date") <- min.date
attr(catch.df.ls,"max.date") <- max.date
attr(catch.df.ls,"forEffPlots") <- forEffPlots
attr(catch.df.ls,"site") <- site
# ---- Compute passage
if(by == 'year'){
pass <- F.est.passage.enh( catch.df.ls, release.df.enh, "year", out.fn.root, ci )
#passby <- pass
} #else if(by != 'year'){
#pass <- F.est.passage.enh( catch.df.ls, release.df, "year", out.fn.root, ci )
#passby <- F.est.passage.enh( catch.df.ls, release.df, by, out.fn.root, ci )
#}
# ---- Update progress bar
setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
# out.fn.roots <- c(out.fn.roots, attr(pass, "out.fn.list"))
#
# # ---- Save
# ans[ 1, j ] <- signif(round(pass$passage,0),passageRounder)
# lci[ 1, j ] <- signif(round(pass$lower.95,0),passageRounder)
# uci[ 1, j ] <- signif(round(pass$upper.95,0),passageRounder)
# setWinProgressBar( progbar, getWinProgressBar(progbar)+barinc )
#
# output.fn <- output.file
#
# # ---- Write passage table to a file, if called for
# if( !is.na(output.fn) ){
#
# # Fix up the pass table to pretty the output
# tmp.df <- passby
#
# if(by == 'week'){
#
# # ---- Obtain Julian dates so days can be mapped to specialized Julian weeks.
# db <- get( "db.file", envir=.GlobalEnv )
# ch <- odbcConnectAccess(db)
# JDates <- sqlFetch( ch, "Dates" )
# close(ch)
#
# the.dates <- JDates[as.Date(JDates$uniqueDate) >= min.date & as.Date(JDates$uniqueDate) <= max.date,]
#
# the.dates <- the.dates[,c('year','julianWeek','julianWeekLabel')]
# the.dates$week <- paste0(the.dates$year,'-',formatC(the.dates$julianWeek, width=2, flag="0"))
# the.dates <- unique(the.dates)
#
# # ---- A join on POSIX dates.
# tmp.df <- merge(tmp.df,the.dates,by=c('week'),all.x=TRUE)
# tmp.df$week <- paste0(strftime(tmp.df$date,"%Y"),"-",tmp.df$julianWeek,": ",tmp.df$julianWeekLabel)
# tmp.df$year <- tmp.df$julianWeek <- tmp.df$julianWeekLabel <- NULL
# #tmp.df <- subset(tmp.df, select = -c(year,julianWeek,julianWeekLabel) )
# }
#
# tzn <- get("time.zone", .GlobalEnv )
# tmp.df$date <- as.POSIXct( strptime( format(tmp.df$date, "%Y-%m-%d"), "%Y-%m-%d", tz=tzn),tz=tzn)
#
# tmp.df$passage <- round(tmp.df$passage)
# tmp.df$lower.95 <- round(tmp.df$lower.95)
# tmp.df$upper.95 <- round(tmp.df$upper.95)
# tmp.df$meanForkLenMM <- round(tmp.df$meanForkLenMM,1)
# tmp.df$sdForkLenMM <- round(tmp.df$sdForkLenMM,2)
# tmp.df$pct.imputed.catch <- round(tmp.df$pct.imputed.catch, 3)
# tmp.df$sampleLengthHrs <- round(tmp.df$sampleLengthHrs,1)
# tmp.df$sampleLengthDays <- round(tmp.df$sampleLengthDays,2)
# names(tmp.df)[ names(tmp.df) == "pct.imputed.catch" ] <- "propImputedCatch"
# names(tmp.df)[ names(tmp.df) == "lower.95" ] <- "lower95pctCI"
# names(tmp.df)[ names(tmp.df) == "upper.95" ] <- "upper95pctCI"
# names(tmp.df)[ names(tmp.df) == "nForkLenMM" ] <- "numFishMeasured"
#
# if( by == "day" ){
# # Merge in the trapsOperating column
# tO <- attr(passby, "trapsOperating")
# tmp.df <- merge( tmp.df, tO, by.x="date", by.y="batchDate", all.x=T )
#
# # For aesthetics, change number fish measured on days in gaps from NA to 0
# tmp.df$numFishMeasured[ is.na(tmp.df$numFishMeasured) & (tmp.df$nTrapsOperating == 0) ] <- 0
# }
#
# # Open file and write out header.
# out.pass.table <- paste(output.fn, paste0(run.name,"_passage_table.csv"), sep="")
# out.fn.roots <- c(out.fn.roots,out.pass.table)
#
# rs <- paste( format(run.season[1], "%d-%b-%Y"), "to", format(run.season[2], "%d-%b-%Y"))
# nms <- names(tmp.df)[1]
# for( i in 2:length(names(tmp.df))){
# if(by == 'day'){
# nms <- paste(nms, ",", names(tmp.df)[i], sep="")
# } else {
# if(i != 3){ # jason add: put in this condition to make 'date' not print. doug doesnt like it.
# nms <- paste(nms, ",", names(tmp.df)[i], sep="")
# }
# }
# }
#
# if(by == 'day'){
# nms <- gsub('date,', '', nms) # by == day results in a slightly different format for tmp.df than the other three.
# }
#
# cat(paste("Writing passage estimates to", out.pass.table, "\n"))
#
# sink(out.pass.table)
# cat(paste("Site=,", catch.df$siteName[1], "\n", sep=""))
# cat(paste("Site ID=,", catch.df$siteID[1], "\n", sep=""))
# cat(paste("Species ID=,", taxon, "\n", sep=""))
# cat(paste("Run =,", run.name, "\n", sep=""))
# cat(paste("Lifestage =,", catch.df.ls$lifeStage[1], "\n", sep=""))
# cat(paste("Summarized by=,", by, "\n", sep=""))
# cat(paste("Dates included=,", rs, "\n", sep=""))
#
# cat("\n")
# cat(nms)
# cat("\n")
# sink()
#
# tmp.df$date <- NULL # jason add: make sure the whole column of date doesnt print.
#
# # Write out the table
#
# # task 2.4, 1/8/2016: if passage = 0, force propImputedCatch to be zero.
# tmp.df$propImputedCatch <- ifelse(tmp.df$passage == 0,0,tmp.df$propImputedCatch)
#
# write.table( tmp.df, file=out.pass.table, sep=",", append=TRUE, row.names=FALSE, col.names=FALSE)
#
# } # close out writing of passage table, if called for
} # close out passage estimate, of all types, for this run
# # ---- Plot the final passage estimates
# if( by != "year" ){
# attr(passby,"summarized.by") <- by
# attr(passby, "species.name") <- "Chinook Salmon"
# attr(passby, "site.name") <- catch.df$siteName[1]
# attr(passby, "run.name" ) <- run.name#catch.df$FinalRun[1]
# attr(passby, "lifestage.name" ) <- "All lifestages"
# attr(passby, "min.date" ) <- min.date
# attr(passby, "max.date" ) <- max.date
#
# passby$passage <- round(passby$passage,0) # task 2.4: 1/8/2016. make the passage csv and barplot passage png agree on integer fish.
# out.f <- F.plot.passage( passby, out.file=output.fn )
# out.fn.roots <- c(out.fn.roots, out.f)
# }
close(progbar)
} # close out everything having to do with the run
# cat("Final Run estimates:\n")
# print(ans)
#
# # ---- compute percentages of each life stage
# ans.pct <- matrix( rowSums( ans ), byrow=T, ncol=ncol(ans), nrow=nrow(ans))
# ans.pct <- ans / ans.pct
# ans.pct[ is.na(ans.pct) ] <- NA
#
# # ---- Write out the table
# df <- data.frame( dimnames(ans)[[1]], ans.pct[,1], ans[,1], lci[,1], uci[,1], stringsAsFactors=F )
# if( ncol(ans) > 1 ){
# # We have more than one run
# for( j in 2:ncol(ans) ){
# df <- cbind( df, data.frame( ans.pct[,j], ans[,j], lci[,j], uci[,j], stringsAsFactors=F ))
# }
# }
# names(df) <- c("LifeStage", paste( rep(runs, each=4), rep( c(".propOfPassage",".passage",".lower95pctCI", ".upper95pctCI"), length(runs)), sep=""))
#
# # ---- Append totals to bottom
# tots <- data.frame( "Total", matrix( colSums(df[,-1]), nrow=1), stringsAsFactors=F)
# names(tots) <- names(df)
# tots[,grep("lower.95", names(tots),fixed=T)] <- NA
# tots[,grep("upper.95", names(tots),fixed=T)] <- NA
# df <- rbind( df, Total=tots )
# df <- df[-1,] # jason add
#
# if( !is.na(output.file) ){
# out.pass.table <- paste(output.file, "_run_passage_table.csv", sep="")
# rs <- paste( format(run.season[1], "%d-%b-%Y"), "to", format(run.season[2], "%d-%b-%Y"))
# nms <- names(df)[1]
# for( i in 2:length(names(df))) nms <- paste(nms, ",", names(df)[i], sep="")
#
# cat(paste("Writing passage estimates to", out.pass.table, "\n"))
#
# sink(out.pass.table)
# cat(paste("Site=,", catch.df$siteName[1], "\n", sep=""))
# cat(paste("Site ID=,", catch.df$siteID[1], "\n", sep=""))
# cat(paste("Species ID=,", taxon, "\n", sep=""))
# cat(paste("Dates included=,", rs, "\n", sep=""))
#
# cat("\n")
# cat(nms)
# cat("\n")
# sink()
#
# write.table( df, file=out.pass.table, sep=",", append=TRUE, row.names=FALSE, col.names=FALSE)
# out.fn.roots <- c(out.fn.roots, out.pass.table)
#
# ls.pass.df <- df
#
# }
#
# nf <- length(out.fn.roots)
#
# # ---- Write out message
# cat("SUCCESS - F.run.passage\n\n")
# cat(paste("Working directory:", getwd(), "\n"))
# cat(paste("R data frames saved in file:", "<none>", "\n\n"))
# nf <- length(out.fn.roots)
# cat(paste("Number of files created in working directory = ", nf, "\n"))
# for(i in 1:length(out.fn.roots)){
# cat(paste(out.fn.roots[i], "\n", sep=""))
# }
# cat("\n")
#
#df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.