#' Simulate the FARFIMA(p,d,q) process, the functional autoregressive fractionally integrated moving average process.
#'
#'
#' @title Simulate the FARFIMA(p,d,q) process in the spectral domain
#' @param FARFIMA_pars The list of the parameters for the FARFIMA(p,d,q) process. Must contain fields: (i) \code{fractional_d}, a real number in the open interval (-0.5,0.5) controling the fractional integration degree. \code{fractional_d} being positive corresponds to long-rande dependence behaviour. (ii) \code{operators_ar}, the list of length 'p' the order of the autoregressive part. The autoregressive operators are considered to be integral operators defined through their kernels which are saved as the elements of the list \code{operators_ar} as functions of two variables, \code{x} and \code{y}, returning the value of the kernel at point (\code{x},\code{y}). In case of degenerate autoregressive part define \code{operators_ar} as an empty list. (iii) \code{operators_ma}, the list of length 'q', the order of the moving average part. Just like \code{operators_ar} its a liks of functions - the kernels of the moving average operators. (iv) The covariance opperator of the stochastic innovation process can be defined either through (iv-a) its kernel, (iv-b) finite rank eigendecomposition, (iv-c) infinite rank decomposition. In the case (iv-a), define \code{sigma} as a function of two variables \code{x} and \code{y}, returning the value of the covariance kernel at point (\code{x},\code{y}). In the case (iv-b), define the elements \code{sigma_eigenvalues} as a vector of finitely many eigenvalues and \code{sigma_eigenfunctions} as a list of the same length as \code{sigma_eigenvalues} with each element being a function of variable \code{x} returning the value of that eigenfunction at point \code{x}. In the case (iv-c), define the elements \code{sigma_eigenvalues} as a function of the variable \code{n} returning the \code{n}-th eigenvalue and the element \code{sigma_eigenfunctions} as a function of two variables, \code{n} and \code{x}, returning the value of the \code{n}-th eigenfunctions at point \code{x}. See the example bellow for some examples on how to set up \code{FARFIMA_pars}.
#' @param t_max Time horizon to be simulated. Must be an even number, otherwise it is increased by one.
#' @param n_grid Number of grid points (spatial resolution) of the discretisation of [0,1] where the FTS is to be simulated.
#' @param seed_number The random seed inicialization for the simulation. The value \code{NULL} means no inicialization
#' @param hybrid_ar If set \code{TRUE} (default), the method first simulates the corresponding FARFIMA(0,d,q) process and then applies the autoregressive filter in the temporal domain. Such runtime is much faster than the fully spectral method (\code{hybrid_ar = FALSE}) in which case the method needs to solve a system of linear equation at each frequency.
#' @param burnin If hybrid_ar=TRUE set how long is the burn-in period for the autoregressive part (100 by default) in the temporal domain.
#' @return functional time series sample, matrix of size (\code{n_grid},\code{t_max})
#' @references Rubin, Panaretos. \emph{Simulation of stationary functional time series with given spectral density}. arXiv, 2020
#' @seealso \code{\link{FARFIMA_covlagh_operator}}, \code{\link{FARFIMA_test_stationarity}}
#' @examples
#' # (i) fractional integration
#' fractional_d <- 0 # in the open interval (-0.5, 0.5), positive number means long-range dependence
#'
#' # (ii) autoregressive operators
#' operators_ar <- list(
#' function(x,y){ 0.3*sin(x-y) },
#' function(x,y){ 0.3*cos(x-y) },
#' function(x,y){ 0.3*sin(2*x) },
#' function(x,y){ 0.3*cos(y) }
#' )
#' # operators_ar <- list() # use empty list for degenerate AR part
#'
#' # (iii) moving average kernels
#' # you can put here arbitrary long list of operators
#' operators_ma <- list(
#' function(x,y){ x+y },
#' function(x,y){ x },
#' function(x,y){ y }
#' )
#' # operators_ma <- list() # use empty list for degenerate MA part
#'
#' # (iv-b) covariance of the inovation defined through eigenvalues and eigenfunctions
#' # you can put here arbitrary long lists but their lenghts should match
#' sigma_eigenvalues <- c(1, 0.6, 0.3, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05)
#' sigma_eigenfunctions <- list(
#' function(x){ sin(2*pi*x) },
#' function(x){ cos(2*pi*x) },
#' function(x){ sin(4*pi*x) },
#' function(x){ cos(4*pi*x) },
#' function(x){ sin(6*pi*x) },
#' function(x){ cos(6*pi*x) },
#' function(x){ sin(8*pi*x) },
#' function(x){ cos(8*pi*x) },
#' function(x){ sin(10*pi*x) },
#' function(x){ cos(10*pi*x) }
#' )
#'
#' # # (iv-c) innovation covariance operator (Brownian motion)
#' # sigma_eigenvalues <- function(n) { 1/((n-0.5)*pi)^2 }
#' # sigma_eigenfunctions <- function(n,x) { sqrt(2)*sin((n-0.5)*pi*x) }
#'
#' # put the parameters into one list
#' FARFIMA_pars <- list(fractional_d=fractional_d, operators_ar=operators_ar, operators_ma=operators_ma, sigma_eigenvalues=sigma_eigenvalues,sigma_eigenfunctions=sigma_eigenfunctions)
#'
#' # # (iv-a) Alternatively, define the kernel of the white noise innovation.
#' # sigma <- function(x,y) { pmin(x,y) } # Brownian motion
#' # FARFIMA_pars <- list(fractional_d=fractional_d,operators_ar=operators_ar,operators_ma=operators_ma, sigma=sigma)
#'
#'
#' # simulate trajectory
#' if (FARFIMA_test_stationarity(FARFIMA_pars)){
#' # fully spectral approach. if AR part is non-degenerate, the simulation involves solving a system of liear equations at each frequency
#' fts_x <- FARFIMA_simulate(FARFIMA_pars, t_max, n_grid, hybrid_ar = F)
#'
#' # # hybrid simulation method
#' # fts_x <- FARFIMA_simulate(FARFIMA_pars, t_max, n_grid, hybrid_ar = T)
#'
#' # display the first curve
#' plot(fts_x[,1], type='l')
#' }
#'
#' @export
FARFIMA_simulate <- function(FARFIMA_pars, t_max, n_grid, seed_number=NULL, hybrid_ar=T, burnin=100){
## random seed if assigned
if (!is.null(seed_number)){ set.seed(seed_number) }
# evaluate operators on grid
grid <- seq( 0, 1, length.out = n_grid ) # grid of [0,1] interval
grid_matrix <- kronecker(grid,matrix(1,1,n_grid))
# check existence of sigma
if(!is.null(FARFIMA_pars[["sigma"]])){
# sigma is defined
if (is.character(FARFIMA_pars$sigma)){
if (FARFIMA_pars$sigma == "bm"){ # if sigma is given by string "bm", it means it's the brownian motion
go_check_eigenvalues <- F
FARFIMA_pars$sigma <- function(x,y){pmin(x,y)}
sigma_eig <- BM_eig(n_grid)
} else {
# if it's string but not "bm" => error
stop("Error: FARFIMA_pars$sigma is string but not 'bm' which is the only acceptable string value")
}
} else {
# if sigma is defined but not "bm", go first check the definition of eigenvalues, if they're defined, use them instead of numerical SVD
go_check_eigenvalues <- T
}
} else {
# sigma is NOT defined
go_check_eigenvalues <- T
}
if (go_check_eigenvalues){
# if assigned eigen functions of sigma
if (!is.null(FARFIMA_pars[["sigma_eigenfunctions"]])){
if (is.list(FARFIMA_pars[["sigma_eigenfunctions"]])){
# low-rank specification
# evaluate eigenfunctions
sigma_eigenfunctions_eval <- matrix(0, ncol=length(FARFIMA_pars$sigma_eigenfunctions), nrow=n_grid)
for (ii in 1:length(FARFIMA_pars$sigma_eigenfunctions)){
sigma_eigenfunctions_eval[,ii] <- FARFIMA_pars$sigma_eigenfunctions[[ii]](grid)
}
# save eigenvalues
sigma_eigenvalues_eval <- FARFIMA_pars$sigma_eigenvalues
} else {
# functions for eigenvalues, eigenfunctions
# evaluate eigenfunctions
n_pc <- n_grid
sigma_eigenfunctions_eval <- matrix(0, ncol=n_pc, nrow=n_grid)
sigma_eigenvalues_eval <- numeric(n_pc)
for (ii in 1:n_pc){
sigma_eigenfunctions_eval[,ii] <- FARFIMA_pars$sigma_eigenfunctions(ii,grid)
sigma_eigenvalues_eval[ii] <- FARFIMA_pars$sigma_eigenvalues(ii)
}
}
# save into list
sigma_eig <- list(
values = sigma_eigenvalues_eval,
vectors = sigma_eigenfunctions_eval
)
# if not specified, create the function for sigma
if(is.null(FARFIMA_pars[["sigma"]])){
FARFIMA_pars$sigma <- kernel_from_eig( FARFIMA_pars$sigma_eigenvalues, FARFIMA_pars$sigma_eigenfunctions )
}
} else {
# numerically evaluate the eigendecomposition of sigma
sigma_svd <- svd( FARFIMA_pars$sigma( grid_matrix,t(grid_matrix) ), nu = n_grid, nv = 0 )
# save into list
sigma_eig <- list(
values = sigma_svd$d,
vectors = sigma_svd$u
)
}
}
n_pc <- length(sigma_eig$values)
# save model order
ar_order <- length(FARFIMA_pars$operators_ar)
ma_order <- length(FARFIMA_pars$operators_ma)
### evaluate the MA and AR operators
operators_ar_eval <- FARFIMA_pars$operators_ar
operators_ma_eval <- FARFIMA_pars$operators_ma
if (ar_order>0){
for (j in 1:ar_order){
operators_ar_eval[[j]] <- FARFIMA_pars$operators_ar[[j]](grid_matrix,t(grid_matrix))
}
}
if (ma_order>0){
for (j in 1:ma_order){
operators_ma_eval[[j]] <- FARFIMA_pars$operators_ma[[j]](grid_matrix,t(grid_matrix))
}
}
# check if I'm doing burnin and then increase t_max by the burnin
if ((ar_order>0) & (hybrid_ar)){
t_max <- t_max + burnin
} else {
hybrid_ar <- FALSE
}
# prepare the ts I'm generating
t_half <- ceiling(t_max/2)
t_max <- t_half*2
ts <- c(1:t_half, t_max)
## get variables Z
# remember, t_half and t_max are real
zs <- matrix(0, n_pc, t_half+1 )
# generate zs, cycle through pc first. this is because of comparability across different n_pc with the same seed
for (pc in 1:n_pc){
# complex zs
zs[pc,1:(t_half-1)] <- rnorm(t_half-1) + 1i * rnorm(t_half-1)
# real zs
zs[pc,t_half] <- 2*rnorm(1)
zs[pc,t_half+1] <- 2*rnorm(1)
}
## get variables V
# get Vs
vs <- matrix(0, n_grid, t_max)
for (ii in 1:(t_half+1)){
omega <- (2*ii*pi)/t_max
# function to be plugged into Theta
f <- numeric(n_grid)
for (n in 1:n_pc){
f <- f + sigma_eig$vectors[,n] * (sqrt(sigma_eig$values[n] / (2*pi)) * zs[n,ii]) # the constant (2*pi) here is due to the fact that the white noise has the spectral density (1/2*pi)*Sigma
}
# f <- sigma_eig$vectors %*% (sqrt(sigma_eig$values) * zs[,ii])
# evaluate theta
# apply MA part (if exsits)
if (ma_order>0){
ma_part <- diag(n_grid)
for (j in 1:ma_order){
ma_part <- ma_part + operators_ma_eval[[j]] * exp(-1i*omega*j) / n_grid
}
f <- ma_part %*% f
}
# apply AR part (if exists)
if ((ar_order>0) & (!hybrid_ar)){ # only if I'm NOT doing the AR in the time domain
ar_part <- diag(n_grid)
for (j in 1:ar_order){
ar_part <- ar_part - operators_ar_eval[[j]] * exp(-1i*omega*j) / n_grid
}
f <- solve(ar_part, f)
}
# apply fractional integration
vs[,ii] <- f * ( 2 * sin(omega/2) )^(-FARFIMA_pars$fractional_d)
}
# zero freq
if (FARFIMA_pars$fractional_d <= 0){
f <- numeric(n_grid)
for (n in 1:n_pc){
f <- f + sigma_eig$vectors[,n] * (sqrt(sigma_eig$values[n]/ (2*pi)) * zs[n,t_half+1])
}
# evaluate theta
# apply MA part (if exsits)
if (ma_order>0){
ma_part <- diag(n_grid)
for (j in 1:ma_order){
ma_part <- ma_part + operators_ma_eval[[j]] * exp(-1i*omega*j) / n_grid
}
f <- ma_part %*% f
}
# apply AR part (if exists)
if ((ar_order>0) & (!hybrid_ar)){ # only if I'm NOT doing the AR in the time domain
ar_part <- diag(n_grid)
for (j in 1:ar_order){
ar_part <- ar_part - operators_ar_eval[[j]] * exp(-1i*omega*j) / n_grid
}
f <- solve(ar_part, f)
}
# apply fractional integration
vs[,t_max] <- f * ( 2 * sin(omega/2) )^(-FARFIMA_pars$fractional_d)
}
# mirror Vs t_half+1,...,t_max-1
for (ii in 1:(t_half-1)){
vs[,t_max-ii] <- Conj(vs[,ii])
}
## iFFT to temporal domain
# rearange the array so zero freq is at the beginning - that's what iFFT needs
vs_for_ifft <- matrix(0, n_grid, t_max)
vs_for_ifft[,2:t_max] <- vs[,1:(t_max-1)]
vs_for_ifft[,1] <- vs[,t_max] # zero freq
fts_x <- sqrt(pi/t_max) * Re(t(mvfft( t(vs_for_ifft), inverse = T )))
if (hybrid_ar){
# apply the AR recursion in the time domain
fts_x <- apply_AR_part(fts_x, FARFIMA_pars$operators_ar)
fts_x <- fts_x[,(burnin+1):ncol(fts_x)]
return( fts_x )
} else {
# just simply return fts_x
return( fts_x )
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.