fitSpecificTBATS <- function(y, use.box.cox, use.beta, use.damping, seasonal.periods=NULL, k.vector=NULL, starting.params=NULL, x.nought=NULL, ar.coefs=NULL, ma.coefs=NULL) {
#print(k.vector)
if(!is.null(seasonal.periods)) {
seasonal.periods <- sort(seasonal.periods)
}
##Meaning/purpose of the first if() statement: If this is the first pass, then use default starting values. Else if it is the second pass, then use the values form the first pass as starting values.
if(is.null(starting.params)) {
##Check for the existence of ARMA() coefficients
if(!is.null(ar.coefs)) {
p <- length(ar.coefs)
} else {
p <- 0
}
if(!is.null(ma.coefs)) {
q <- length(ma.coefs)
} else {
q <- 0
}
#Calculate starting values:
#if(sum(seasonal.periods) > 16) {
alpha <- .01
#} else {
# alpha <- .01
#}
if(use.beta) {
adj.beta <- 1
#if(sum(seasonal.periods) > 16) {
#beta.v <- 1.178782e-05
beta.v <- 0
#} else {
# beta.v <- .02
#}
b <- 0
if(use.damping) {
#if(sum(seasonal.periods) > 16) {
small.phi <- .999
#} else {
# small.phi <- .97
#}
} else {
small.phi <- 1
}
} else {
adj.beta <- 0
beta.v <- NULL
b <- NULL
small.phi <- NULL
use.damping=FALSE
}
if(!is.null(seasonal.periods)) {
gamma.one.v <- rep(0, length(k.vector))
gamma.two.v <- rep(0, length(k.vector))
s.vector <- numeric(2*sum(k.vector))
k.vector <- as.integer(k.vector)
#for(s in seasonal.periods) {
# s.vector <- cbind(s.vector, numeric(s))
#}
} else {
gamma.one.v <- NULL
gamma.two.v <- NULL
s.vector <- NULL
}
if(use.box.cox) {
lambda <- BoxCox.lambda(y, lower=0, upper=1.5)
y.transformed <- BoxCox(y, lambda=lambda)
#print(lambda)
} else { #the "else" is not needed at the moment
lambda <- NULL
}
} else {
paramz <- unParameteriseTBATS(starting.params$vect, starting.params$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
if(!is.null(beta.v)) {
adj.beta <- 1
} else {
adj.beta <- 0
}
b <- 0
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if(!is.null(seasonal.periods)) {
s.vector <- numeric(2*sum(k.vector))
} else {
s.vector <- NULL
}
#ar.coefs <- paramz$ar.coefs
#ma.coefs <- paramz$ma.coefs
##Check for the existence of ARMA() coefficients
if(!is.null(ar.coefs)) {
p <- length(ar.coefs)
} else {
p <- 0
}
if(!is.null(ma.coefs)) {
q <- length(ma.coefs)
} else {
q <- 0
}
}
if(is.null(x.nought)) {
#Start with the seed states equal to zero
if(!is.null(ar.coefs)) {
d.vector <- numeric(length(ar.coefs))
} else {
d.vector <- NULL
}
if(!is.null(ma.coefs)) {
epsilon.vector <- numeric(length(ma.coefs))
} else {
epsilon.vector <- NULL
}
x.nought <- makeXMatrix(l=0,b=b, s.vector=s.vector, d.vector=d.vector, epsilon.vector=epsilon.vector)$x
}
#Make the parameter vector parameterise
param.vector <- parameterise(alpha=alpha, beta.v=beta.v, small.phi=small.phi, gamma.v=cbind(gamma.one.v,gamma.two.v), lambda=lambda, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
par.scale <- makeParscale(param.vector$control)
if(!is.null(seasonal.periods)) {
tau <- as.integer(2*sum(k.vector))
} else {
tau <- as.integer(0)
}
w <- .Call("makeTBATSWMatrix", smallPhi_s = small.phi, kVector_s = k.vector, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, tau_s = tau, PACKAGE = "forecast")
#print(w)
if(!is.null(seasonal.periods)) {
gamma.bold <- matrix(0,nrow=1,ncol=(2*sum(k.vector)))
.Call("updateTBATSGammaBold", gammaBold_s=gamma.bold, kVector_s=k.vector, gammaOne_s=gamma.one.v, gammaTwo_s=gamma.two.v, PACKAGE = "forecast")
} else {
gamma.bold <- NULL
}
g <- matrix(0, nrow=((2*sum(k.vector))+1+adj.beta+p+q), ncol=1)
if(p != 0) {
g[(1+adj.beta+tau+1),1] <- 1
}
if(q != 0) {
g[(1+adj.beta+tau+p+1),1] <- 1
}
#print("A:")
#print(gamma.bold)
#print(alpha)
#print(beta.v)
.Call("updateTBATSGMatrix", g_s=g, gammaBold_s=gamma.bold, alpha_s=alpha, beta_s=beta.v, PACKAGE = "forecast")
#if(!is.null(ar.coefs) | !is.null(ma.coefs)) {
# print(g)
#}
#print("past A")
F <- makeTBATSFMatrix(alpha=alpha, beta=beta.v, small.phi=small.phi, seasonal.periods=seasonal.periods, k.vector=k.vector, gamma.bold.matrix=gamma.bold, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
#print(F)
#print(g)
#print(w$w.transpose)
D <- F - g %*% w$w.transpose
##################
#From here down
#############
####
#Set up environment
opt.env <- new.env()
assign("F", F, envir=opt.env)
assign("w.transpose", w$w.transpose, envir=opt.env)
assign("g", g, envir=opt.env)
assign("gamma.bold", gamma.bold, envir=opt.env)
assign("k.vector", k.vector, envir=opt.env)
assign("y", matrix(y, nrow=1, ncol=length(y)), envir=opt.env)
assign("y.hat", matrix(0, nrow=1, ncol=length(y)), envir=opt.env)
assign("e", matrix(0, nrow=1, ncol=length(y)), envir=opt.env)
assign("x", matrix(0, nrow=length(x.nought), ncol=length(y)), envir=opt.env)
##Set up matrices to find the seed states
if(use.box.cox) {
y.transformed <- BoxCox(y, lambda=lambda)
#x.nought <- BoxCox(x.nought, lambda=lambda)
.Call("calcTBATSFaster",ys=matrix(y.transformed,nrow=1,ncol=length(y.transformed)), yHats=opt.env$y.hat, wTransposes=opt.env$w.transpose, Fs=opt.env$F, xs=opt.env$x, gs=opt.env$g, es=opt.env$e, xNought_s=x.nought, PACKAGE="forecast")
y.tilda <- opt.env$e
} else {
.Call("calcTBATSFaster",ys=opt.env$y, yHats=opt.env$y.hat, wTransposes=opt.env$w.transpose, Fs=opt.env$F, xs=opt.env$x, gs=opt.env$g, es=opt.env$e, xNought_s=x.nought, PACKAGE="forecast")
y.tilda <- opt.env$e
}
w.tilda.transpose <- matrix(0, nrow=length(y), ncol=ncol(w$w.transpose))
w.tilda.transpose[1,] <- w$w.transpose
#for(i in 2:length(y)) {
# w.tilda.transpose[i,] <- w.tilda.transpose[(i-1),] %*% D
#}
w.tilda.transpose=.Call("calcWTilda", wTildaTransposes=w.tilda.transpose, Ds=D, PACKAGE = "forecast")
##If there is a seasonal component in the model, then the follow adjustment need to be made so that the seed states can be found
# if(!is.null(seasonal.periods)) {
#drop the lines from w.tilda.transpose that correspond to the last seasonal value of each seasonal period
# list.cut.w <- cutW(use.beta=use.beta, w.tilda.transpose=w.tilda.transpose, seasonal.periods=seasonal.periods, p=p, q=q)
# w.tilda.transpose <- list.cut.w$matrix
# mask.vector <- list.cut.w$mask.vector
##Run the regression to find the SEED STATES
# coefs <- lm(t(y.tilda) ~ w.tilda.transpose - 1)$coefficients
#print(coefs)
##Find the ACTUAL SEASONAL seed states
# x.nought <- calcSeasonalSeeds(use.beta=use.beta, coefs=coefs, seasonal.periods=seasonal.periods, mask.vector=mask.vector, p=p, q=q)
# } else {
#Remove the AR() and MA() bits if they exist
#print(w.tilda.transpose)
if((p != 0) | (q != 0)) {
end.cut <- ncol(w.tilda.transpose)
start.cut <- end.cut-(p+q)+1
w.tilda.transpose <- w.tilda.transpose[,-c(start.cut:end.cut)]
}
#print(w.tilda.transpose)
x.nought <- lm(t(y.tilda) ~ w.tilda.transpose - 1)$coefficients
x.nought <- matrix(x.nought, nrow=length(x.nought), ncol=1)
##Replace the AR() and MA() bits if they exist
if((p != 0) | (q != 0)) {
arma.seed.states <- numeric((p+q))
arma.seed.states <- matrix(arma.seed.states, nrow=length(arma.seed.states), ncol=1)
x.nought <- rbind(x.nought, arma.seed.states)
}
# }
#print(x.nought)
#print("on1-A")
##Optimisation
if(use.box.cox) {
#print("on1-B")
#Un-transform the seed states
#x.nought.untransformed <- InvBoxCox(x.nought, lambda=lambda)
assign("x.nought.untransformed", InvBoxCox(x.nought, lambda=lambda), envir=opt.env)
#Optimise the likelihood function
optim.like <- optim(par=param.vector$vect, fn=calcLikelihoodTBATS, method="Nelder-Mead", opt.env=opt.env, use.beta=use.beta, use.small.phi=use.damping, seasonal.periods=seasonal.periods, param.control=param.vector$control, p=p, q=q, tau=tau, control=list(maxit=(100*length(param.vector$vect)^2), parscale=par.scale))
#Get the parameters out of the param.vector
paramz <- unParameteriseTBATS(optim.like$par, param.vector$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if(!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs,nrow=1,ncol=p)
} else {
ar.coefs <- NULL
p <- 0
}
if(!is.null(paramz$ma.coefs)) {
ma.coefs <- matrix(paramz$ma.coefs, nrow=1, ncol=q)
q <- length(ma.coefs)
} else {
ma.coefs <- NULL
q <- 0
}
#Transform the seed states
x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda=lambda)
##Calculate the variance:
#1. Re-set up the matrices
w <- .Call("makeTBATSWMatrix", smallPhi_s=small.phi, kVector_s=k.vector, arCoefs_s=ar.coefs, maCoefs_s=ma.coefs, tau_s=tau, PACKAGE="forecast")
if(!is.null(gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s=gamma.bold, kVector_s=k.vector, gammaOne_s=gamma.one.v, gammaTwo_s=gamma.two.v, PACKAGE = "forecast")
}
#print("in BC")
#print(g)
#print(gamma.bold)
#print(alpha)
#print(beta.v)
.Call("updateTBATSGMatrix", g_s=g, gammaBold_s=gamma.bold, alpha_s=alpha, beta_s=beta.v, PACKAGE = "forecast")
#if(!is.null(ar.coefs) | !is.null(ma.coefs)) {
# print(g)
#}
.Call("updateFMatrix", F, small.phi, alpha, beta.v, gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE="forecast")
#print("here!")
#print(w)
#2. Calculate!
y.transformed <- BoxCox(y, lambda=lambda)
fitted.values.and.errors <- calcModel(y.transformed, x.nought, F, g, w)
e <- fitted.values.and.errors$e
fitted.values <- fitted.values.and.errors$y.hat
fitted.values <- InvBoxCox(fitted.values, lambda=lambda)
variance <- sum((e*e))/length(y)
#e <- InvBoxCox(e, lambda=lambda)
ee <- y-fitted.values
} else { #else if we are not using the Box-Cox transformation
#print("$$$$$$$$$$$$$$$$$$")
#Optimise the likelihood function
if(length(param.vector$vect) > 1) {
#print("multi-param no BC")
optim.like <- optim(par=param.vector$vect, fn=calcLikelihoodNOTransformedTBATS, method="Nelder-Mead", opt.env=opt.env, x.nought=x.nought, use.beta=use.beta, use.small.phi=use.damping, seasonal.periods=seasonal.periods, param.control=param.vector$control, p=p, q=q, tau=tau, control=list(maxit=(100*length(param.vector$vect)^2), parscale=par.scale))
} else {
#print("single param")
optim.like <- optim(par=param.vector$vect, fn=calcLikelihoodNOTransformedTBATS, method="BFGS", opt.env=opt.env, x.nought=x.nought, use.beta=use.beta, use.small.phi=use.damping, seasonal.periods=seasonal.periods, param.control=param.vector$control, p=p, q=q, tau=tau, control=list(parscale=par.scale))
}
#print("optimised!!")
#Get the parameters out of the param.vector
paramz <- unParameteriseTBATS(optim.like$par, param.vector$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if(!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs,nrow=1,ncol=p)
} else {
ar.coefs <- NULL
p <- 0
}
if(!is.null(paramz$ma.coefs)) {
ma.coefs <- matrix(paramz$ma.coefs, nrow=1, ncol=q)
q <- length(ma.coefs)
} else {
ma.coefs <- NULL
q <- 0
}
##Calculate the variance:
#1. Re-set up the matrices
w <- .Call("makeTBATSWMatrix", smallPhi_s=small.phi, kVector_s=k.vector, arCoefs_s=ar.coefs, maCoefs_s=ma.coefs, tau_s=tau, PACKAGE="forecast")
if(!is.null(gamma.bold)) {
#print("gamma.bold no-BC")
#print(gamma.bold)
#print(k.vector)
#print(gamma.one.v)
#print(gamma.two.v)
.Call("updateTBATSGammaBold", gammaBold_s=gamma.bold, kVector_s=k.vector, gammaOne_s=gamma.one.v, gammaTwo_s=gamma.two.v, PACKAGE = "forecast")
}
#print("in no-BC")
#print(g)
#print(gamma.bold)
#print(alpha)
#print(beta.v)
.Call("updateTBATSGMatrix", g_s=g, gammaBold_s=gamma.bold, alpha_s=alpha, beta_s=beta.v, PACKAGE = "forecast")
#if(!is.null(ar.coefs) | !is.null(ma.coefs)) {
# print(g)
#}
.Call("updateFMatrix", F, small.phi, alpha, beta.v, gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE="forecast")
#print("calc")
#2. Calculate!
fitted.values.and.errors <- calcModel(y, x.nought, F, g, w)
e <- fitted.values.and.errors$e
fitted.values <- fitted.values.and.errors$y.hat
variance <- sum((e*e))/length(y)
}
#Get the likelihood
likelihood <- optim.like$value
#Calculate the AIC
aic <- likelihood+2*(length(param.vector$vect)+nrow(x.nought))
#Make a list object
model.for.output <- list(lambda=lambda, alpha=alpha, beta=beta.v, damping.parameter=small.phi, gamma.one.values=gamma.one.v, gamma.two.values=gamma.two.v, ar.coefficients=ar.coefs, ma.coefficients=ma.coefs, likelihood=likelihood, optim.return.code=optim.like$convergence, variance=variance, AIC=aic, parameters=list(vect=optim.like$par, control=param.vector$control), seed.states=x.nought, fitted.values=c(fitted.values), errors=c(e), x=fitted.values.and.errors$x, seasonal.periods=seasonal.periods, k.vector=k.vector, y=y, p=p, q=q)
class(model.for.output) <- c("tbats","bats")
####
#if((!use.damping) & (use.beta)) {
#print("@@@@AIC:")
#print(aic)
#print("@@@@@@@")
#}
return(model.for.output)
}
calcLikelihoodTBATS <- function(param.vector, opt.env, use.beta, use.small.phi, seasonal.periods, param.control, p=0, q=0, tau=0) {
#param vector should be as follows: Box-Cox.parameter, alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
#Put the components of the param.vector into meaningful individual variables
#print("&&&&&&&&&&& Param Vector:")
#print(param.vector)
#print("&&&&&&&&&&&&&&")
paramz <- unParameteriseTBATS(param.vector, param.control)
box.cox.parameter <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
ar.coefs <- paramz$ar.coefs
ma.coefs <- paramz$ma.coefs
if(!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs,nrow=1,ncol=p)
} else {
ar.coefs <- NULL
p <- 0
}
if(!is.null(paramz$ma.coefs)) {
ma.coefs <- matrix(paramz$ma.coefs, nrow=1, ncol=q)
q <- length(ma.coefs)
} else {
ma.coefs <- NULL
q <- 0
}
x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda=box.cox.parameter)
.Call("updateWtransposeMatrix", wTranspose_s=opt.env$w.transpose, smallPhi_s=small.phi, tau_s=as.integer(tau), arCoefs_s=ar.coefs, maCoefs_s=ma.coefs, p_s=as.integer(p), q_s=as.integer(q), PACKAGE = "forecast")
if(!is.null(opt.env$gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s=opt.env$gamma.bold, kVector_s=opt.env$k.vector, gammaOne_s=gamma.one.v, gammaTwo_s=gamma.two.v)
}
.Call("updateTBATSGMatrix", g_s=opt.env$g, gammaBold_s=opt.env$gamma.bold, alpha_s=alpha, beta_s=beta.v, PACKAGE="forecast")
.Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE="forecast")
mat.transformed.y <- BoxCox(opt.env$y, box.cox.parameter)
n <- ncol(opt.env$y)
.Call("calcTBATSFaster", ys=mat.transformed.y, yHats=opt.env$y.hat, wTransposes= opt.env$w.transpose, Fs=opt.env$F, xs=opt.env$x, gs=opt.env$g, es=opt.env$e, xNought_s=x.nought, PACKAGE="forecast")
##
####
####################################################################
log.likelihood <- n*log(sum(opt.env$e^2))-2*(box.cox.parameter-1)*sum(log(opt.env$y))
assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir=opt.env)
#print("two 2 - AFTER")
#print(param.vector)
if(checkAdmissibility(opt.env, box.cox=box.cox.parameter, small.phi=small.phi, ar.coefs=ar.coefs, ma.coefs=ma.coefs, tau=sum(seasonal.periods))) {
return(log.likelihood)
} else {
return(10^20)
}
}
calcLikelihoodNOTransformedTBATS <- function(param.vector, opt.env, x.nought, use.beta, use.small.phi, seasonal.periods, param.control, p=0, q=0, tau=0) {
#The likelihood function without the Box-Cox Transformation
#param vector should be as follows: alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
#Put the components of the param.vector into meaningful individual variables
#print("&&&&&&&&&&& Param Vector:")
#print(param.vector)
#print("&&&&&&&&&&&&&&")
paramz <- unParameteriseTBATS(param.vector, param.control)
box.cox.parameter <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if(!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs,nrow=1,ncol=p)
} else {
ar.coefs <- NULL
p <- 0
}
if(!is.null(paramz$ma.coefs)) {
ma.coefs <- matrix(paramz$ma.coefs, nrow=1, ncol=q)
q <- length(ma.coefs)
} else {
ma.coefs <- NULL
q <- 0
}
.Call("updateWtransposeMatrix", wTranspose_s=opt.env$w.transpose, smallPhi_s=small.phi, tau_s=as.integer(tau), arCoefs_s=ar.coefs, maCoefs_s=ma.coefs, p_s=as.integer(p), q_s=as.integer(q), PACKAGE = "forecast")
if(!is.null(opt.env$gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s=opt.env$gamma.bold, kVector_s=opt.env$k.vector, gammaOne_s=gamma.one.v, gammaTwo_s=gamma.two.v)
}
.Call("updateTBATSGMatrix", g_s=opt.env$g, gammaBold_s=opt.env$gamma.bold, alpha_s=alpha, beta_s=beta.v, PACKAGE="forecast")
.Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE="forecast")
n <- ncol(opt.env$y)
.Call("calcTBATSFaster", ys=opt.env$y, yHats=opt.env$y.hat, wTransposes= opt.env$w.transpose, Fs=opt.env$F, xs=opt.env$x, gs=opt.env$g, es=opt.env$e, xNought_s=x.nought, PACKAGE="forecast")
##
####
####################################################################
log.likelihood <- n*log(sum(opt.env$e*opt.env$e))
assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir=opt.env)
if(checkAdmissibility(opt.env=opt.env, box.cox=NULL, small.phi=small.phi, ar.coefs=ar.coefs, ma.coefs=ma.coefs, tau=tau)) {
return(log.likelihood)
} else {
return(10^20)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.