##########################
#Load the libraries
library(fda.usc)
library(roahd)
library(energy)
library(entropy)
library(partykit)
##Load the classification tree function
source("functionsREG.R")
################
#Build the functional object ----- define parameters
size <- c(50,50,50,50)
P <- 50
n.var <- 1
############
#Load the function that create the multivariate functional object
source("gen_data_REG_CATS.R")
#Generate data
data=list()
M=100
for(i in 1:M){
alpha <- matrix( round(runif(4,0.1,1),2),
nrow=4, ncol=1)
beta <- matrix( round(runif(4,0.1,1),2),
nrow=4, ncol=1)
data[[i]]=gen_data_reg(size=size,P=P,n.var=n.var,alpha=alpha,beta=beta,
sigma=1)
}
#save(data, file = "Regression_Sim_Dataset.RData")
load("Regression_Sim_Dataset.RData")
MEPmy <- c()
MEP_b <- c()
MEP_pc <- c()
for(i in 1:M){
print(i)
#select train e test set
#id.train <- sample(1:(3*size[1]), size=0.7*3*size[1])
#list.train <- lapply(data[[i]], function(x) {x[id.train]})
#list.test <- lapply(data[[i]], function(x) {x[-id.train]})
nb <- 15
#REGRESSION FUNCTIONAL TREE
myREG <- mytree(Y="Y", data=data[[i]], weights = NULL,
minbucket = 5,
alpha = 0.05, R = 1000,
rnd.sel = T, rnd.splt = TRUE, nb=nb)
plot(myREG)
#FUNCTIONAL LINEAR MODEL BASIS
x <- data[[i]]$V1
y <- data[[i]]$Y
tt=x[["argvals"]]
dataf=as.data.frame(y)
nbasis.x=15
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis.x=list("x"=basis1)
res=fregre.basis(x,y,basis.x=basis1)
#########FUNCTIONAL LINEAR MODEL --- PC
res2 <- fregre.pc(x, y, kmax = 7)
###################
##PREDICTION MYREG##
foo <- min.basis(data[[i]]$V1, numbasis = nb)
fd3 <- fdata2fd(foo$fdata.est, type.basis = "bspline", nbasis = foo$numbasis.opt)
m.coef <- data.frame(t(fd3$coefs))
for(j in 1: dim(m.coef)[2]){
names(m.coef)[j] <- paste("V1",names(m.coef)[j],sep = ".")
}
y_pred=predict(myREG, newdata = m.coef)
MEPmy[i] <- (sum((y-y_pred)^2)/length(y))/(var(y))
#################
##PREDICTION FLM
y_pred1 <- predict.fregre.fd(res, new.fdataobj=data[[i]]$V1)
MEP_b[i] <- (sum((y-y_pred1)^2)/length(y))/(var(y))
###PREDICTION PC
y_pred2 <- predict.fregre.fd(res2,data[[i]]$V1)
MEP_pc[i] <- (sum((y-y_pred2)^2)/length(y))/(var(y))
}
save(MEPmy,MEP_b,MEP_pc, file="results.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.