# Loading the libraries
library(cluster)
library(fda.usc)
# Main function -----------------------------------------------------------
etree <- function(response,
covariates,
case.weights = NULL,
minbucket = 1,
alpha = 0.05,
R = 1000,
split.type = 'coeff',
coef.split.type = 'test',
nb = 5) {
# Check whether covariates is a list
if(!is.list(covariates)) stop("Argument 'covariates' must be provided as a list")
# Number of covariates
n.var = length(covariates)
# If the case weights are not provided, they are all initialized as 1
if(is.null(case.weights))
case.weights <- rep(1L, as.numeric(length(response)))
# New list of covariates (needed here to build the df used by party)
newcovariates = lapply(covariates, function(j){
if(class(j) == 'fdata'){
foo <- fda.usc::min.basis(j, numbasis = nb)
fd3 <- fda.usc::fdata2fd(foo$fdata.est,
type.basis = "bspline",
nbasis = foo$numbasis.opt)
foo$coef <- t(fd3$coefs)
return(foo)
} else if(class(j) == 'list' &
all(sapply(j, class) == 'igraph')){
shell <- graph.to.shellness.distr.df(j)
return(shell)
} else {
return(j)
}
}
)
# Building a df with all the new 'variables'
newcovariates.onlybasis <- newcovariates
for(i in 1:n.var){
if(class(covariates[[i]]) == 'fdata') {
newcovariates.onlybasis[[i]] <- newcovariates.onlybasis[[i]]$coef
}
}
newcovariates.df <- as.data.frame(do.call(cbind, newcovariates.onlybasis))
names(newcovariates.df) <- 1:ncol(newcovariates.df)
# Growing the tree (finds the split rules)
nodes <- growtree(id = 1L,
response = response,
covariates = covariates,
case.weights = case.weights,
minbucket = minbucket,
alpha = alpha,
R = R,
n.var = n.var,
split.type = split.type,
coef.split.type = coef.split.type,
nb = nb)
print(c('NODES', nodes))
# Actually performing the splits
fitted.obs <- fitted_node(nodes, data = newcovariates.df)
# Returning a rich constparty object
data1 = cbind('response' = as.data.frame(response), newcovariates.df)
names(data1) <- c('response', 1:(ncol(data1)-1))
ret <- party(nodes,
data = newcovariates.df,
fitted = data.frame("(fitted)" = fitted.obs,
"(response)" = data1$response,
check.names = FALSE),
terms = terms(response ~ ., data = data1))
return(as.constparty(ret))
}
# growtree ----------------------------------------------------------------
growtree <- function(id = 1L,
response,
covariates,
case.weights,
minbucket,
alpha,
R,
n.var,
split.type = 'coeff',
coef.split.type = 'test',
nb) {
# For less than <minbucket> observations, stop here
if (sum(case.weights) < minbucket)
return(partynode(id = id))
# New list of covariates (here again, since it must be done at each split)
newcovariates = lapply(covariates, function(j){
if(class(j) == 'fdata'){
foo <- fda.usc::min.basis(j, numbasis = nb)
fd3 <- fda.usc::fdata2fd(foo$fdata.est,
type.basis = "bspline",
nbasis = foo$numbasis.opt)
foo$coef <- t(fd3$coefs)
return(foo)
} else if(class(j) == 'list' &
all(sapply(j, class) == 'igraph')){
shell <- graph.to.shellness.distr.df(j)
return(shell)
} else {
return(j)
}
}
)
# Finding the best split (variable selection & split point search)
res_splt <- findsplit(response = response,
covariates = covariates,
newcovariates = newcovariates,
alpha = alpha,
R = R,
lp = rep(2, 2),
split.type = split.type,
coef.split.type = coef.split.type,
nb = nb)
# Separately saving res_splt outputs
sp <- res_splt$sp
varselect <- res_splt$varselect
# If no split is found, stop here
if (is.null(sp))
return(partynode(id = id))
# Assigning the ids to the observations
kidids <- c()
switch(class(covariates[[varselect]]),
fdata = {
if(split.type == 'coeff'){
# observations before the split point are assigned to node 1
kidids[which(newcovariates[[varselect]]$coef[, sp$varid] <= sp$breaks)] <- 1
# observations before the split point are assigned to node 2
kidids[which(newcovariates[[varselect]]$coef[, sp$varid] > sp$breaks)] <- 2
} else if (split.type == 'cluster') {
kidids[sp$index == 1] <- 1
kidids[sp$index == 2] <- 2
}
},
numeric = {
kidids[(which(covariates[[varselect]] <= sp$breaks))] <- 1
kidids[(which(covariates[[varselect]] > sp$breaks))] <- 2
},
integer = {
kidids[(which(covariates[[varselect]] <= sp$breaks))] <- 1
kidids[(which(covariates[[varselect]] > sp$breaks))] <- 2
},
factor = {
kidids[sp$index == 1] <- 1
kidids[sp$index == 2] <- 2
}
)
# Total number of features for each covariate
total_features <- lapply(covariates,
function(v) {
switch(
class(v),
logical = 1,
factor = 1,
numeric = 1,
integer = 1,
matrix = ncol(v),
fdata = {
foo <- fda.usc::min.basis(v, numbasis = nb)
foo$numbasis.opt }
)
})
# Total number of features before the selected variable
step <- if(length(total_features) > 1) {
sum_feat <- do.call(sum, total_features[which(1:n.var < varselect)])
as.integer(sum_feat)
} else {
sum_feat <- 0L
}
# Shifting the varid by the number of the previous features
if(class(covariates[[varselect]]) == 'fdata'){
sp$varid = step + sp$varid #since here sp$varid is bselect
} else {
sp$varid = step + 1 #since sp$varid is xselect!
}
# If all the observations belong to the same node, no split is done
if (all(kidids == 1) | all(kidids == 2))
return(partynode(id = id))
# Initialization of the kid nodes
kids <- vector(mode = "list", length = max(kidids, na.rm = TRUE))
# Giving birth to the kid nodes
for (kidid in 1:length(kids)) {
# selecting observations for the current node
w <- case.weights
w[kidids != kidid] <- 0
# getting next node id
if (kidid > 1) {
myid <- max(nodeids(kids[[kidid - 1]]))
} else{
myid <- id
}
# starting recursion on this kid node
kids[[kidid]] <-
growtree(
id = as.integer(myid + 1),
response = subset(response, as.logical(w)),
covariates = lapply(covariates, function(cov) subset(cov, as.logical(w))),
case.weights = rep(1L, sum(w)),
minbucket,
alpha,
R,
n.var = n.var,
split.type = split.type,
coef.split.type = coef.split.type,
nb = nb)
}
# Return the nodes (i.e. the split rules)
return(partynode(id = as.integer(id),
split = sp,
kids = kids,
info = list(p.value = min(info_split(sp)$p.value, na.rm = TRUE))
))
}
# Find split --------------------------------------------------------------
findsplit <- function(response,
covariates,
newcovariates,
alpha,
R,
lp = rep(2,2),
split.type = 'coeff',
coef.split.type = 'test',
nb) {
# Performing an independence test between the response and each covariate
p = lapply(covariates, function(sel.cov) mytestREG(x = sel.cov,
y = response,
R = R,
lp = lp))
p = t(matrix(unlist(p), ncol = 2, byrow = T))
rownames(p) <- c("statistic", "p-value")
if (all(is.na(p[2,]))) return(NULL)
# Bonferroni correction
minp <- min(p[2,], na.rm = TRUE)
minp <- 1 - (1 - minp) ^ sum(!is.na(p[2,]))
if (minp > alpha) return(NULL)
# Variable selection
if (length(which(p[2,] == min(p[2,], na.rm = T))) > 1) {
xselect <- which.max(p[1,]) # in case of multiple minima, take that with the highest test statistic
} else{
xselect <- which.min(p[2,])
}
# Selected covariate
x <- covariates[[xselect]]
newx <- newcovariates[[xselect]]
# Split point search
split.objs = split.opt(y = response,
x = x,
newx = newx,
split.type = split.type,
coef.split.type = coef.split.type,
nb = nb)
# Separately saving split.objs outputs
splitindex <- split.objs$splitindex
bselect <- split.objs$bselect
# Returning the split point
switch(class(x),
numeric = {
return(list(sp = partysplit(varid = as.integer(xselect),
breaks = splitindex,
info = list(p.value = 1-(1-p)^sum(!is.na(p)))),
varselect = xselect))
},
integer = {
return(list(sp = partysplit(varid = as.integer(xselect),
breaks = splitindex,
info = list(p.value = 1-(1-p)^sum(!is.na(p)))),
varselect = xselect))
},
factor = {
return(list(sp = partysplit(varid = as.integer(xselect),
index = splitindex,
info = list(p.value = 1-(1-p)^sum(!is.na(p)))),
varselect = xselect))
},
fdata = {
if(split.type == 'coeff'){
return(list(sp = partysplit(varid = as.integer(bselect),
breaks = splitindex,
info = list(p.value = 1-(1-p[2,])^sum(!is.na(p[2,])))),
varselect = xselect))
} else if(split.type == 'cluster'){
return(list(sp = partysplit(varid = as.integer(xselect),
index = splitindex,
info = list(p.value = 1-(1-p[2,])^sum(!is.na(p[2,])))),
varselect = xselect))
}
},
list = if(attributes(x[[1]])$names == 'diagram'){
return(list(sp = partysplit(varid = as.integer(xselect),
index = splitindex,
info = list(p.value = 1-(1-p[2,])^sum(!is.na(p[2,])))),
varselect = xselect))
}
)
}
# Split point search ------------------------------------------------------
#' Find Split Value
#'
#' Computes optimal split value
#'
#' @param y response variable
#' @param x selected covariate
#'
#' @export
#'
#' @examples
#' add_numbers(1, 2) ## returns 3
#'
split.opt <- function(y,
x,
newx,
split.type = 'coeff',
coef.split.type = 'test',
nb,
R=1000,
wass.dist = NULL){
switch(class(x),
factor = {
lev <- levels(x[drop = TRUE])
if (length(lev) == 2) {
splitpoint <- lev[1]
} else{
comb <- do.call("c", lapply(1:(length(lev) - 1),
### TBC: isn't this just floor(length(lev)/2) ??
function(x)combn(lev,
x,
simplify = FALSE)))
xlogp <- sapply(comb, function(q) mychisqtest(x %in% q, y))
splitpoint <- comb[[which.min(xlogp)]]
}
# split into two groups (setting groups that do not occur to NA)
splitindex <- !(levels(x) %in% splitpoint)
splitindex[!(levels(x) %in% lev)] <- NA_integer_
splitindex <- splitindex - min(splitindex, na.rm = TRUE) + 1L
},
numeric = {
s <- sort(x)
comb = sapply(s[2:(length(s)-1)], function(j) x<j)
#first and last one are excluded (trivial partitions)
xp.value <- apply(comb, 2, function(q) mytestREG(x = q, y = y))
if (length(which(xp.value[2,] == min(xp.value[2,], na.rm = T))) > 1) {
splitindex <- s[which.max(xp.value[1,])]
} else {
splitindex <- s[which.min(xp.value[2,])]
}
},
integer = {
s <- sort(x)
comb = sapply(s[2:(length(s)-1)], function(j) x<j)
xp.value <- apply(comb, 2, function(q) mytestREG(x = q, y = y))
if (length(which(xp.value[2,] == min(xp.value[2,], na.rm = T))) > 1) {
splitindex <- s[which.max(xp.value[1,])]
} else {
splitindex <- s[which.min(xp.value[2,])]
}
},
fdata = {
if(split.type == 'coeff'){
x1 = newx$coef
bselect <- 1:dim(x1)[2]
p1 <- c()
p1 <- sapply(bselect, function(i) mytestREG(x1[, i], y, R = R))
colnames(p1) <- colnames(x1)
if (length(which(p1[2,] == min(p1[2,], na.rm = T))) > 1) {
bselect <- as.integer(which.max(p1[1,]))
} else{
bselect <- as.integer(which.min(p1[2,]))
}
sel.coeff = x1[,bselect]
s <- sort(sel.coeff)
comb = sapply(s[2:(length(s)-1)], function(j) sel.coeff<j)
if(coef.split.type == 'variance'){
obj <- apply(comb, 2, function(c){
data1 <- y[c]
data2 <- y[!c]
v1 <- var(data1)
v2 <- var(data2)
n1 <- length(data1)
n2 <- length(data2)
n <- n1+n2
obj_c <- (n1*v1+n2*v2)/n
return(obj_c)})
splitindex <- s[which.min(obj)]
} else if (coef.split.type == 'test'){
xp.value <- apply(comb, 2, function(q) mytestREG(x = q, y = y))
if (length(which(xp.value[2,] == min(xp.value[2,], na.rm = T))) > 1) {
splitindex <- s[which.max(xp.value[1,])]
} else {
splitindex <- s[which.min(xp.value[2,])]
}
}
} else if(split.type == 'cluster') {
cl.fdata = kmeans.fd(x, ncl=2, draw = FALSE, par.ini=list(method="exact"))
splitindex <- cl.fdata$cluster
}
},
list = if(attributes(x[[1]])$names == "diagram"){
cl.diagrams = cluster::pam(wass.dist, k = 2, diss = TRUE)
splitindex <- cl.diagrams$clustering
}
)
out <- list('splitindex' = splitindex)
if(class(x) == 'fdata') out$bselect <- bselect
return(out)
}
# Independence (dcor) test ------------------------------------------------
mytestREG <- function(x,
y,
R = 1000,
lp = c(2,2)) {
# Computing the dissimilarities within x and y
d1 = compute.dissimilarity(x, lp = lp[1])
d2 = compute.dissimilarity(y, lp = lp[2])
# Distance correlation test
ct <- energy::dcor.test(d1, d2, R = R)
if (!is.na(ct$statistic)) {
return(c(ct$statistic, ct$p.value))
} else{
c(NA, NA)
}
}
# Distances ---------------------------------------------------------------
compute.dissimilarity <- function(x,
lp = 2){
# Computing the dissimilarities
switch(class(x),
logical = dist(x),
factor = as.matrix(cluster::daisy(as.data.frame(x))),
numeric = dist(x),
integer = dist(x),
matrix = dist(x),
fdata = metric.lp(x, lp=lp))
# list = {
# if(!is.null(attributes(x[[1]]))){
# if(attributes(x[[1]])$names == "diagram"){
# d1 = x[case.weights]
# k.fun = function(i, j) TDA::wasserstein(d1[[i]], d1[[j]])
# k.fun = Vectorize(k.fun)
# d.idx = seq_along(d1)
# outer(d.idx,d.idx, k.fun)
# }}
#})
}
# Graphs ------------------------------------------------------------------
graph.to.shellness.distr.df <- function(data, shell.limit = NULL) {
tot.graphs = length(data)
list.df <- list()
max.shellness = 0
for (i in 1:tot.graphs) {
g = data[[i]]
coreness.distr = count(coreness(g)) # aggr. by count
rownames(coreness.distr) <-
coreness.distr$x # re-index the df by the shellness number
# keep just the frequency column
coreness.distr = coreness.distr[c('freq')]
# transpose the df. Convert the column-df into row-df.
#This will ease the join with df.shellness.distr
coreness.distr = t(coreness.distr)
list.df[[i]] <- coreness.distr
this.max.shellness = colnames(coreness.distr)[
ncol(coreness.distr)]
# update the maximum shellness found so far (used to build
#the df of shellness distr)
if (this.max.shellness > max.shellness) {
max.shellness = this.max.shellness
}
}
if (!is.null(shell.limit)) {
# calculates the max shellness between the number of
# predictors used in train set and the one calculated in
# test set
max.shellness <-
if (as.numeric(max.shellness) < shell.limit - 1)
shell.limit - 1
else
max.shellness
}
col.names = seq(0, max.shellness, 1)
col.names = lapply(col.names, function(x)
as.character(x)) # convert to char
# Inizialization ----------------------------------------------------------
# Loading the libraries
library(fda.usc)
library(energy)
library(entropy)
library(partykit)
library(mlr)
library(fastDummies)
source("functions.R")
# Loading the dataset
data('iris')
# Errors
ACC_etree <- c()
ACC_mlc <- c()
# Response and covariates lists construction ------------------------------
# Response
resp <- iris$Species
# Covariates
cov.list <- list('Sepal.Length' = iris$Sepal.Length, 'Sepal.Width' = iris$Sepal.Width, 'Petal.Length' = iris$Petal.Length, 'Petal.Width' = iris$Petal.Width)
# Model fitting -----------------------------------------------------------
### CLASSIFICATION ENERGY TREE ###
etree_fit <- etree(response = resp,
covariates = cov.list,
case.weights = NULL,
minbucket = 1,
alpha = 0.05,
R = 1000)
plot(etree_fit)
### MULTILABEL CLASSIFICATION VIA CLASSIFIER CHAINS (MLR PACKAGE) ###
# Transforming response into logical dummy variables (required by makeMultilabelTask)
resp_dummy <- dummy_cols(resp)[,-1]
resp_dummy <- sapply(resp_dummy, as.logical)
colnames(resp_dummy) <- c('setosa', 'versicolor', 'virginica')
# All data (coariates and dummies for the response) together
all_data <- cbind(as.data.frame(do.call(cbind, cov.list)), resp_dummy)
# Multilabel infrastucture (i.e. setting data and target)
iris_task <- makeMultilabelTask(data = all_data, target = colnames(resp_dummy))
# Base Learner
binary.learner = makeLearner("classif.rpart")
# Multilabel learner (wrapper of repetitions of the base one)
mcc = makeMultilabelClassifierChainsWrapper(binary.learner)
# Train and test sets
n = getTaskSize(iris_task)
train_set = sample(1:n, round(n*0.8))
test_set = (1:n)[!(1:n) %in% train_set]
# Train the multilabel learner
iris_train = train(mcc, iris_task, subset = train_set)
# Prediction
iris_pred = predict(iris_train, task = iris_task, subset = test_set)
# Accuracy
performance(iris_pred, measures = list(multilabel.acc))
# Prediction --------------------------------------------------------------
### CLASSIFICATION ENERGY TREE PREDICTION ###
# New covariates
new.cov.list = lapply(cov.list, function(j){
if(class(j) == 'fdata'){
foo <- fda.usc::min.basis(j, numbasis = n.bas)
fd3 <- fda.usc::fdata2fd(foo$fdata.est,
type.basis = "bspline",
nbasis = foo$numbasis.opt)
foo$coef <- t(fd3$coefs)
return(foo$coef)
} else if(class(j) == 'list' &
all(sapply(j, class) == 'igraph')){
shell <- graph.to.shellness.distr.df(j)
return(shell)
} else {
return(j)
}
}
)
# New covariates dataframe
new.cov.df <- as.data.frame(do.call(cbind, new.cov.list))
names(new.cov.df) <- 1:ncol(new.cov.df)
# Prediction
y_pred <- predict(etree_fit, newdata = new.cov.df)
# Error
y <- resp
t <- table(y_pred, y)
ACC_etree <- sum(diag(t))/(length(y))
### MULTILABEL CLASSIFICATION VIA CLASSIFIER CHAINS PREDICTION ###
ACC_mlc <- performance(iris_pred, measures = list(multilabel.acc))
# Storing the results
save(ACC_etree, ACC_mlc, file = "results.RData")
df.shellness.distr = data.frame(matrix(
data = NA_integer_,
nrow = tot.graphs,
ncol = length(col.names)
)) #df with all graphs shellness distribution
colnames(df.shellness.distr) <- col.names
# fill in the df with the shellness distribution of each graph
for (i in 1:tot.graphs) {
updated.cols = colnames(list.df[[i]])
for (x in updated.cols) {
df.shellness.distr[i, x] = list.df[[i]][, x]
}
}
df.shellness.distr[is.na(df.shellness.distr)] <-
0 # replace NA by 0
# converted the df columns to integer
df.shellness.distr[, seq(1, ncol(df.shellness.distr))] <-
sapply(df.shellness.distr[, seq(1, ncol(df.shellness.distr))],
as.integer)
return(df.shellness.distr[,1])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.