generateLocalPPPs: Wrapper function to compute local pairwise posterior...

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

After running gimm and posthoc with the estimate_context option set to "y" and the intFiles option set to "TRUE", the user may specify a set of samples (called context) to compute the local pairwise posterior probabilities for all pairs of genes.

Usage

1
2
generateLocalPPPs(dataFile, M, T, samples = NULL, cc = NULL, out = NULL, wcS = NULL, nIter=1000, burnIn = 500, verbose = TRUE)
localGeneClustering(dataFile, out = NULL, wcS = NULL, cc = NULL, samples = NULL, burnIn = 500)

Arguments

dataFile

file name used in previous gimm/posthoc run

M

total number of samples

T

total number of genes

samples

a set of samples. must be a subset of (1:M)

cc

if specified, a matrix of sample to context assignments where rows represent Gibbs steps and columns represent samples.

out

if specified, a matrix of global gene cluster assignments where rows represent Gibbs steps and columns represent genes.

wcS

if specified, a matrix of local gene cluster assignments where rows represent Gibbs steps as well as global clusters and columns represent samples.

nIter

nIter used in previous gimm/posthoc run.

burnIn

burnIn used in previous gimm/posthoc run.

verbose

want progress updates?

Details

The function first creates a file similar to the .out file, then runs the C function posthoc. The output (i.e. the local PPPs) is stored in a .zm3 file.

Value

An error code ('0' for success) produced when running the C function "posthoc."

Author(s)

Johannes Freudenberg

References

http://eh3.uc.edu/gimm

See Also

runGimmNPosthoc, computeDCEscore

Examples

1
2
3
4
5
6
7
8
data(GalData)
gimmOut <- runGimmNPosthoc(GalData, dataFile="galData", M=20, T=820, estimate_contexts="y", intFiles=TRUE, verbose=TRUE)
generateLocalPPPs(dataFile="galData", M=20, T=820, samples=which(cutree(gimmOut$hSClustData, k=2)==1), nIter=10000, burnIn=5000)
localPPPs <- read.table("galData.zm3")[, 1]
localPPPs <- matrix(localPPPs, 820, 820)
localGtr <- hclust(as.dist(1 - localPPPs), method = "average")
localGtr$labels <- 1:820
plot(localGtr)

uc-bd2k/gimmR documentation built on May 3, 2019, 2:15 p.m.