SyntheticDataSimulation: Generate synthetic count data for analysis

Description Usage Arguments

View source: R/SimulationDataGeneration.R

Description

Generate synthetic count data for analysis

Usage

1
2
3
SyntheticDataSimulation(simul.data, dataset, fixedfold = FALSE,
  samples.per.cond, n.var, n.diffexp, fraction.upregulated, dispType, mode,
  dataset.parameters)

Arguments

simul.data

Characters indicating which dataset will be used for simulation data generation "KIRC" for KIRC dataset. "Bottomly" for Bottomly dataset. "mKdB" for hybrid dataset combining mean of KIRC and dispersion of Bottomly datatset. "mBdK" for hybrid dataset combining mean of Bottomly and dispersion of KIRC datatset.

dataset

Characters specifying the file name of simulation dataset.

fixedfold

A logical indicating whether this dataset is generated by fold changes with fixed values or random folds following exponential distribution.

samples.per.cond

An integer indicating number of samples for each condition (e.g. 3).

n.var

An integer indicating the number of total gene in the synthetic data.

n.diffexp

An integer indicating number of generated DE genes in the synthetic data.

fraction.upregulated

Proportion of upregulated DE genes in the synthetic data. (e.g. 0.5).

dispType

Characters indicating how is the dispersion parameter assumed to be for each condition to make a synthetic data. Possible values are 'same' and 'different'.

mode

Characters specifying test conditions used for simulation data generation. "D" for basic simulation (not adding outliers). "R" for adding 5 "OS" for adding outlier sample to each sample group. "DL" for decreasing KIRC simulation dispersion 22.5 times (similar to SEQC data dispersion) to compare with SEQC data.

dataset.parameters

A list containing estimated mean and dispersion parameters and filtered count from original count dataset.


unistbig/compareDEtools documentation built on May 1, 2020, 9:41 p.m.