Description Usage Arguments Details Value Author(s) References Examples
View source: R/voom.sw.limma.createRmd.R
A function to generate code that can be run to perform differential expression analysis of RNAseq data (comparing two conditions) by applying the voom transformation with quantile normalization (from the limma package) followed by differential expression analysis with limma.
1 2 | voom.sw.limma.createRmd(data.path, result.path, codefile,
norm.method = "TMM")
|
data.path |
The path to a .rds file containing the |
result.path |
The path to the file where the result object will be saved. |
codefile |
The path to the file where the code will be written. |
norm.method |
The between-sample normalization method used to compensate for varying library sizes and composition in the differential expression analysis. The normalization factors are calculated using the |
For more information about the methods and the interpretation of the parameters, see the limma
package and the corresponding publications.
The function generates a .Rmd
file containing the code for performing the differential expression analysis. This file can be executed using e.g. the knitr
package.
BuKyung Baik
Smyth GK (2005): Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds), Springer, New York, pages 397-420
Law CW, Chen Y, Shi W and Smyth GK (2014): voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29
Liu, R., Holik, A. Z., Su, S., Jansz, N., Chen, K., Leong, H. S., Blewitt, M. E., Asselin-Labat, M.-L., Smyth, G. K., Ritchie, M. E. (2015). Why weight? Combining voom with estimates of sample quality improves power in RNA-seq analyses. Nucleic Acids Research 43, e97.
1 2 3 4 5 6 7 | tmpdir <- normalizePath(tempdir(), winslash = "/")
SyntheticDataSimulation(simul.data= 'KIRC', dataset = file.path(tmpdir, "mydata.rds"), n.var = 500,
samples.per.cond = 3, n.diffexp = 100, dispType='same', mode='D',
fraction.upregulated=0.5, dataset.parameters=generateDatasetParameter())
compcodeR::runDiffExp(data.file = file.path(tmpdir, "mydata.rds"), result.extent = "voom.sw.limma",
Rmdfunction = "voom.sw.limma.createRmd",
output.directory = tmpdir,)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.