### =========================================================================
### Inter-range methods
### -------------------------------------------------------------------------
###
### TODO: We need a ranges() setter for Views objects that provides this
### functionality. Once we have it, use it instead of this.
.set_Views_ranges <- function(x, new_ranges)
{
new_mcols <- mcols(new_ranges, use.names=FALSE)
mcols(new_ranges) <- NULL
BiocGenerics:::replaceSlots(x, ranges=new_ranges,
elementMetadata=new_mcols,
check=FALSE)
}
### NOT exported but used in the GenomicRanges package
global2local_revmap <- function(unlisted_revmap, y, x)
{
offsets <- rep.int(start(PartitioningByEnd(x)) - 1L, elementNROWS(y))
unlisted_revmap - offsets
}
### NOT exported but used in the GenomicFeatures package
local2global_revmap <- function(unlisted_revmap, y, x)
{
offsets <- rep.int(start(PartitioningByEnd(x)) - 1L, elementNROWS(y))
unlisted_revmap + offsets
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### range()
###
### Always return an IRanges (or NormalIRanges) *instance* whatever
### IntegerRanges derivative the input is, so does NOT act like an
### endomorphism in general.
setMethod("range", "IntegerRanges",
function(x, ..., with.revmap=FALSE, na.rm=FALSE)
{
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
if (!identical(na.rm, FALSE))
warning("\"range\" method for IntegerRanges objects ",
"ignores the 'na.rm' argument")
args <- unname(list(x, ...))
## TODO: Replace line below with
## args <- lapply(args, ranges)
## when ranges() works on IntegerRanges objects.
args <- lapply(args,
function(arg) IRanges(start(arg), width=width(arg)))
ir <- do.call(c, args)
ans <- .Call2("C_range_IRanges", ir, PACKAGE="IRanges")
if (is(x, "NormalIRanges"))
ans <- as(ans, "NormalIRanges")
if (with.revmap){
mcols(ans) <- DataFrame(revmap=IntegerList(seq_along(ir)))
}
ans
}
)
### Overwrite above method with optimized method for StitchedIPos objects.
### Like the above method, return an IRanges instance.
setMethod("range", "StitchedIPos",
function(x, ..., with.revmap=FALSE, ignore.strand=FALSE, na.rm=FALSE)
{
x <- x@pos_runs
callGeneric()
}
)
setMethod("range", "IntegerRangesList",
function(x, ..., with.revmap=FALSE, na.rm=FALSE)
{
if (length(list(x, ...)) >= 2L)
x <- merge(x, ...)
endoapply(x, range, with.revmap=with.revmap)
}
)
### Equivalent to, but much faster than, 'endoapply(x, range)'.
.range_CompressedIRangesList <- function(x, with.revmap=FALSE)
{
## 'x_start' and 'x_end' are CompressedIntegerList objects with the
## same shape as 'x'.
x_start <- start(x)
x_end <- end(x)
## TEMPORARY HACK!
if (!requireNamespace("XVector", quietly=TRUE))
stop("the XVector package is required by the \"range\" method ",
"for CompressedIRangesList objects")
## 'sv' and 'ev' are XIntegerViews objects (see XVector package).
sv <- Views(x_start@unlistData, x_start@partitioning)
ev <- Views(x_end@unlistData, x_end@partitioning)
is_not_empty_view <- width(sv) != 0L # same as 'width(ev) != 0L'
unlisted_ans <- IRanges(viewMins(sv)[is_not_empty_view],
viewMaxs(ev)[is_not_empty_view])
ans_partitioning <- PartitioningByEnd(cumsum(is_not_empty_view))
if (with.revmap) {
x_partitioning <- unname(PartitioningByEnd(x))
global_revmap <- relist(seq_along(unlist(x, use.names=FALSE)),
x_partitioning[width(x_partitioning) != 0L])
local_revmap <- global2local_revmap(global_revmap, ans_partitioning, x)
mcols(unlisted_ans)$revmap <- local_revmap
}
ans <- relist(unlisted_ans, ans_partitioning)
names(ans) <- names(x)
ans
}
setMethod("range", "CompressedIRangesList",
function(x, ..., with.revmap=FALSE, na.rm=FALSE)
{
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
if (length(list(x, ...)) >= 2L)
x <- merge(x, ...)
.range_CompressedIRangesList(x, with.revmap=with.revmap)
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### reduce()
###
setGeneric("reduce", signature="x",
function(x, drop.empty.ranges=FALSE, ...) standardGeneric("reduce")
)
### Always return an IRanges (or NormalIRanges) *instance* whatever
### IntegerRanges derivative the input is, so does NOT act like an
### endomorphism in general.
setMethod("reduce", "IntegerRanges",
function(x, drop.empty.ranges=FALSE, min.gapwidth=1L,
with.revmap=FALSE,
with.inframe.attrib=FALSE)
{
if (!isTRUEorFALSE(drop.empty.ranges))
stop("'drop.empty.ranges' must be TRUE or FALSE")
if (!isSingleNumber(min.gapwidth))
stop("'min.gapwidth' must be a single integer")
if (!is.integer(min.gapwidth))
min.gapwidth <- as.integer(min.gapwidth)
if (min.gapwidth < 0L)
stop("'min.gapwidth' must be non-negative")
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
if (!isTRUEorFALSE(with.inframe.attrib))
stop("'with.inframe.attrib' must be TRUE or FALSE")
C_ans <- .Call2("C_reduce_IntegerRanges",
start(x), width(x),
drop.empty.ranges, min.gapwidth,
with.revmap,
with.inframe.attrib,
PACKAGE="IRanges")
ans <- new2("IRanges", start=C_ans$start,
width=C_ans$width,
check=FALSE)
if (is(x, "NormalIRanges"))
ans <- as(ans, "NormalIRanges")
if (with.revmap) {
mcols(ans) <- DataFrame(revmap=IntegerList(C_ans$revmap))
}
if (with.inframe.attrib) {
inframe <- new2("IRanges", start=C_ans$inframe.start,
width=width(x),
check=FALSE)
attr(ans, "inframe") <- inframe
}
ans
}
)
setMethod("reduce", "Views",
function(x, drop.empty.ranges=FALSE, min.gapwidth=1L,
with.revmap=FALSE,
with.inframe.attrib=FALSE)
{
new_ranges <- callGeneric(x@ranges,
drop.empty.ranges=drop.empty.ranges,
min.gapwidth=min.gapwidth,
with.revmap=with.revmap,
with.inframe.attrib=with.inframe.attrib)
.set_Views_ranges(x, new_ranges)
}
)
setMethod("reduce", "IntegerRangesList",
function(x, drop.empty.ranges=FALSE, min.gapwidth=1L,
with.revmap=FALSE,
with.inframe.attrib=FALSE)
{
endoapply(x, reduce, drop.empty.ranges = drop.empty.ranges,
min.gapwidth = min.gapwidth,
with.revmap=with.revmap,
with.inframe.attrib = with.inframe.attrib)
}
)
### 'with.inframe.attrib' is ignored for now.
### TODO: Support 'with.inframe.attrib=TRUE'.
.reduce_CompressedIRangesList <- function(x, drop.empty.ranges=FALSE,
min.gapwidth=1L,
with.revmap=FALSE,
with.inframe.attrib=FALSE)
{
if (!isTRUEorFALSE(drop.empty.ranges))
stop("'drop.empty.ranges' must be TRUE or FALSE")
if (!isSingleNumber(min.gapwidth))
stop("'min.gapwidth' must be a single integer")
if (!is.integer(min.gapwidth))
min.gapwidth <- as.integer(min.gapwidth)
if (min.gapwidth < 0L)
stop("'min.gapwidth' must be non-negative")
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
if (!identical(with.inframe.attrib, FALSE))
stop("'with.inframe.attrib' argument not yet supported ",
"when reducing a CompressedIRangesList object")
C_ans <- .Call2("C_reduce_CompressedIRangesList",
x, drop.empty.ranges, min.gapwidth, with.revmap,
PACKAGE="IRanges")
unlisted_ans <- new2("IRanges", start=C_ans$start,
width=C_ans$width,
check=FALSE)
if (with.revmap)
mcols(unlisted_ans) <- DataFrame(revmap=IntegerList(C_ans$revmap))
ans_partitioning <- PartitioningByEnd(C_ans$breakpoints)
names(ans_partitioning) <- names(x)
relist(unlisted_ans, ans_partitioning)
}
setMethod("reduce", "CompressedIRangesList", .reduce_CompressedIRangesList)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### gaps()
###
setGeneric("gaps", signature="x",
function(x, start=NA, end=NA) standardGeneric("gaps")
)
### Always return an IRanges (or NormalIRanges) *instance* whatever
### IntegerRanges derivative the input is, so does NOT act like an
### endomorphism in general.
setMethod("gaps", "IntegerRanges",
function(x, start=NA, end=NA)
{
start <- S4Vectors:::normargSingleStartOrNA(start)
end <- S4Vectors:::normargSingleEndOrNA(end)
C_ans <- .Call2("C_gaps_IntegerRanges",
start(x), width(x), start, end,
PACKAGE="IRanges")
ans <- new2("IRanges", start=C_ans$start,
width=C_ans$width,
check=FALSE)
if (is(x, "NormalIRanges"))
ans <- as(ans, "NormalIRanges")
ans
}
)
setMethod("gaps", "Views",
function(x, start=NA, end=NA)
{
if (!isSingleNumberOrNA(start))
stop("'start' must be a single integer")
if (!is.integer(start))
start <- as.integer(start)
if (!isSingleNumberOrNA(end))
stop("'end' must be a single integer")
if (!is.integer(end))
end <- as.integer(end)
if (is.na(start))
start <- 1L
if (is.na(end))
end <- length(subject(x))
new_ranges <- gaps(x@ranges, start=start, end=end)
.set_Views_ranges(x, new_ranges)
}
)
.gaps_RangesList <- function(x, start=NA, end=NA)
{
x_len <- length(x)
if (!S4Vectors:::isNumericOrNAs(start))
stop("'start' must be an integer vector or NA")
if (!is.integer(start))
start <- as.integer(start)
if (!S4Vectors:::isNumericOrNAs(end))
stop("'end' must be an integer vector or NA")
if (!is.integer(end))
end <- as.integer(end)
start <- IntegerList(as.list(S4Vectors:::recycleVector(start, x_len)))
end <- IntegerList(as.list(S4Vectors:::recycleVector(end, x_len)))
mendoapply(gaps, x, start = start, end = end)
}
setMethod("gaps", "IntegerRangesList", .gaps_RangesList)
.gaps_CompressedIRangesList <- function(x, start=NA, end=NA)
{
## Normalize 'start'.
if (!S4Vectors:::isNumericOrNAs(start))
stop("'start' must be an integer vector or NA")
if (!is.integer(start))
start <- as.integer(start)
if (length(start) != 1L)
start <- S4Vectors:::V_recycle(start, x,
x_what="start", skeleton_what="x")
## Normalize 'end'.
if (!S4Vectors:::isNumericOrNAs(end))
stop("'end' must be an integer vector or NA")
if (!is.integer(end))
end <- as.integer(end)
if (length(end) != 1L)
end <- S4Vectors:::V_recycle(end, x,
x_what="end", skeleton_what="x")
chunksize <- 10000000L
if (length(x) <= chunksize) {
## Process all at once.
ans <- .Call2("C_gaps_CompressedIRangesList",
x, start, end,
PACKAGE="IRanges")
return(ans)
}
## Process by chunk.
verbose <- getOption("verbose", default=FALSE)
chunks <- as(breakInChunks(length(x), chunksize=chunksize), "IRanges")
ans_chunks <- lapply(seq_along(chunks),
function(i) {
if (verbose)
cat("Processing chunk #", i, "/", length(chunks), " ... ",
sep="")
chunk <- chunks[i]
x_chunk <- extractROWS(x, chunk)
start_chunk <- if (length(start) == 1L) start
else extractROWS(start, chunk)
end_chunk <- if (length(end) == 1L) end
else extractROWS(end, chunk)
ans_chunk <- .gaps_CompressedIRangesList(x_chunk,
start=start_chunk,
end=end_chunk)
if (verbose)
cat("OK\n")
ans_chunk
})
do.call(c, ans_chunks)
}
setMethod("gaps", "CompressedIRangesList", .gaps_CompressedIRangesList)
### 'start' and 'end' are ignored.
setMethod("gaps", "MaskCollection",
function(x, start=NA, end=NA)
{
start <- 1L
end <- width(x)
x@nir_list <- lapply(nir_list(x),
function(nir) gaps(nir, start=start, end=end)
)
x@NAMES <- as.character(NA)
x@desc <- as.character(NA)
x
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### disjoin()
###
setGeneric("disjoin", function(x, ...) standardGeneric("disjoin"))
### Always return an IRanges *instance* whatever IntegerRanges derivative
### the input is, so does NOT act like an endomorphism in general.
### FIXME: Does not properly handle zero-width ranges at the moment e.g.
### disjoin(IRanges(c(1, 11, 13), width=c(2, 5, 0)) returns
### IRanges(c(1, 11, 13), width=c(2, 2, 3)) when it should return
### IRanges(c(1, 11, 13, 13), width=c(2, 2, 0, 3)).
setMethod("disjoin", "IntegerRanges",
function(x, with.revmap=FALSE)
{
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
## starts: original starts and end+1 when inside another interval
## ends: original ends and start-1 when inside another interval
starts <- unique(start(x))
ends <- unique(end(x))
adj_start <- head(sort(unique(c(starts, ends + 1L))), -1L)
adj_end <- tail(sort(unique(c(ends, starts - 1L))), -1L)
adj_width <- adj_end - adj_start + 1L
adj <- new2("IRanges", start=adj_start,
width=adj_width,
check=FALSE)
adj <- subsetByOverlaps(adj, x, minoverlap=1L)
if (with.revmap)
mcols(adj)$revmap <- as(sort(findOverlaps(adj, x)),"List")
adj
}
)
### Basically a no-op but returns a NormalIRanges *instance* for consistency
### with how the other inter-range transformations (range(), reduce(), gaps())
### behave on a NormalIRanges object.
setMethod("disjoin", "NormalIRanges", function(x) as(x, "NormalIRanges"))
setMethod("disjoin", "IntegerRangesList",
function(x, with.revmap=FALSE)
endoapply(x, disjoin, with.revmap=with.revmap)
)
setMethod("disjoin", "CompressedIRangesList",
function(x, with.revmap=FALSE, ...)
{
if (!isTRUEorFALSE(with.revmap))
stop("'with.revmap' must be TRUE or FALSE")
.wunlist <- function(x)
## unlist CompressedIntegerList, with integer(0) as 0
{
w <- integer(length(x))
w[elementNROWS(x) != 0L] <- unlist(x, use.names=FALSE)
w
}
rng <- range(x)
if (sum(.wunlist(width(rng) + 1)) > .Machine$integer.max)
return(endoapply(x, disjoin, with.revmap=with.revmap, ...))
## localize coordinates
off0 <- head(.wunlist(width(rng) + 1L), -1L)
offset <- c(1L, cumsum(off0)) - .wunlist(start(rng))
local <- unlist(shift(x, offset), use.names=FALSE)
## disjoin
d <- disjoin(local, with.revmap=with.revmap, ...)
vec <- unlist(start(shift(rng, offset)), use.names=FALSE)
lvls <- factor(seq_along(x))
lvls0 <- lvls[elementNROWS(rng) != 0]
f <- lvls0[findInterval(start(d), vec)]
ans <- split(d, f)
## globalize coordinates
ans <- shift(ans, -offset)
## localize 'revmap'
if (with.revmap) {
unlisted_ans <- unlist(ans, use.names=FALSE)
global_revmap <- mcols(unlisted_ans, use.names=FALSE)$revmap
local_revmap <- global2local_revmap(global_revmap, ans, x)
mcols(unlisted_ans)$revmap <- local_revmap
ans <- relist(unlisted_ans, ans)
}
names(ans) <- names(x)
ans
})
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### isDisjoint()
###
setGeneric("isDisjoint", function(x, ...) standardGeneric("isDisjoint"))
setMethod("isDisjoint", "IntegerRanges",
function(x)
{
x_len <- length(x)
if (x_len < 2L)
return(TRUE)
x_start <- start(x)
x_end <- end(x)
oo <- order(x)
start2 <- x_start[oo]
end2 <- x_end[oo]
all(start2[-1L] > end2[-x_len])
}
)
### Overwrite above method with optimized method for StitchedIPos objects.
setMethod("isDisjoint", "StitchedIPos", function(x) callGeneric(x@pos_runs))
setMethod("isDisjoint", "NormalIRanges", function(x) TRUE)
setMethod("isDisjoint", "IntegerRangesList",
function(x) vapply(x, isDisjoint, logical(1))
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### disjointBins()
###
## make intervals disjoint by segregating them into separate IntegerRanges
setGeneric("disjointBins", function(x, ...) standardGeneric("disjointBins"))
setMethod("disjointBins", "IntegerRanges",
function(x)
{
x_ord <- NULL
if (S4Vectors:::isNotSorted(start(x))) { # minimize work for sorted ranges (common)
x_ord <- order(x)
x <- x[x_ord]
}
bins <- .Call2("C_disjointBins_IntegerRanges", start(x), width(x),
PACKAGE="IRanges")
if (!is.null(x_ord)) {
rev_ord <- integer(length(x_ord))
rev_ord[x_ord] <- seq_along(rev_ord)
bins <- bins[rev_ord]
}
names(bins) <- names(x)
bins
}
)
### Overwrite above method with trivial method for NormalIRanges objects.
setMethod("disjointBins", "NormalIRanges", function(x) rep.int(1L, length(x)))
setMethod("disjointBins", "IntegerRangesList",
function(x) as(lapply(x, disjointBins), "IntegerList")
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.