Description Usage Format Author(s) Source References Examples
A MultiAssayExperiment
object providing a reduced version of
the TCGA ACC dataset for all 92 patients. RNA-seq, copy number, and somatic
mutations are included only for genes whose proteins are included in the
reverse-phase protein array. The MicroRNA-seq dataset is also included,
with infrequently expressed microRNA removed. Clinical, pathological, and
subtype information are provided by colData(miniACC)
, and some
additional details are provided by metadata(miniACC).
1 |
A MultiAssayExperiment
with 5 experiments, providing:
RNA-seq count data: an ExpressionSet
with 198 rows and 79 columns
Reccurent copy number lesions identified by GISTIC2:
a SummarizedExperiment
with 198 rows and 90 columns
Reverse Phase Protein Array: an ExpressionSet
with 33 rows and 46 columns. Rows are indexed by genes,
but protein annotations are available from
featureData(miniACC[["RPPAArray"]])
. The source of these
annotations is noted in abstract(miniACC[["RPPAArray"]])
Somatic mutations: a matrix
with 223 rows and
90 columns. 1 for any kind of non-silent mutation, zero for silent
(synonymous) or no mutation.
microRNA sequencing: an ExpressionSet
with
471 rows and 80 columns. Rows not having at least 5 counts in at least
5 samples were removed.
Levi Waldron lwaldron.research@gmail.com
https://github.com/waldronlab/multiassayexperiment-tcga
Zheng S *et al.*: Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 2016, 29:723-736.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | miniACC
metadata(miniACC)
colnames(colData(miniACC))
table(miniACC$vital_status)
longFormat(miniACC["MAPK3", , ], colDataCols = c("vital_status", "days_to_death"))
wideFormat(miniACC["MAPK3", , ], colDataCols = c("vital_status", "days_to_death"))
##
## The following is the code used to create this mini dataset from the full ACC dataset.
## The full ACC MultiAssayExperiment was created by the pipeline at
## https://github.com/waldronlab/multiassayexperiment-tcga.
## Not run:
## See www.tinyurl.com/MAEOurls for more pre-built TCGA MultiAssayExperiment objects
download.file("http://s3.amazonaws.com/multiassayexperiments/accMAEO.rds",
destfile = "accMAEO.rds")
library(MultiAssayExperiment)
library(RaggedExperiment) #needed for RaggedExperiment objects by updateObject()
library(Biobase)
acc <- readRDS("accMAEO.rds")
acc <- updateObject(acc)
protmap <- read.csv(paste0("http://genomeportal.stanford.edu/",
"pan-tcga/target_selection_send_data",
"?filename=Allprotein.txt"), as.is = TRUE
)
RPPAgenes <- Filter(function(x) x != "", protmap$Genes)
RPPAgenes <- unlist(strsplit(RPPAgenes, ","))
RPPAgenes <- unique(RPPAgenes)
miniACC <-
acc[RPPAgenes, , c("RNASeq2GeneNorm", "gistict", "RPPAArray", "Mutations")]
mut <- assay(miniACC[["Mutations"]], i = "Variant_Classification")
mut <- ifelse(is.na(mut) | mut == "Silent", 0, 1)
miniACC[["Mutations"]] <- mut
colData(miniACC) <- colData(miniACC)[, c(1:17, 810:822)]
rpparowData <-
protmap[match(rownames(miniACC[["RPPAArray"]]), protmap$Genes),]
rpparowData <- AnnotatedDataFrame(rpparowData)
featureData(miniACC[["RPPAArray"]]) <- rpparowData
md <-
list(
title = "Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma",
PMID = "27165744",
sourceURL = "http://s3.amazonaws.com/multiassayexperiments/accMAEO.rds",
RPPAfeatureDataURL = paste0("http://genomeportal.stanford.edu/",
"pan-tcga/show_target_selection_file",
"?filename=Allprotein.txt"),
colDataExtrasURL = "http://www.cell.com/cms/attachment/2062093088/2063584534/mmc3.xlsx"
)
metadata(miniACC) <- md
mirna <- acc[["miRNASeqGene"]]
mirna <- mirna[rowSums(assay(mirna) >= 5) >= 5, ]
experimentData(mirna)@abstract <-
"Note: Rows not having at least 5 counts in at least 5 samples were removed."
miniACC <- c(miniACC,
list(miRNASeqGene = mirna),
sampleMap = sampleMap(acc)[sampleMap(acc)$assay == "miRNASeqGene",])
miniACC[["RNASeq2GeneNorm"]] <-
as(miniACC[["RNASeq2GeneNorm"]], "SummarizedExperiment")
miniACC[["RPPAArray"]] <-
as(miniACC[["RPPAArray"]], "SummarizedExperiment")
miniACC[["miRNASeqGene"]] <-
as(miniACC[["miRNASeqGene"]], "SummarizedExperiment")
save(miniACC, file = "data/miniACC.RData", compress = "bzip2")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.