Description Usage Arguments Details Value Author(s) Examples
MML is used to estimate the population parameters (i.e., mean and variance) for an IRT model. Here, we treat item parameters as known and maximize the marginal distribution to obtain parameter estimates for the (normal) population distribution
1 2 3 4 5 |
formula |
an object of class |
data |
an optional data frame, list or environment (or object
coercible by |
params |
item parameters organized as a list of lists. For more info see the irt.ability function help page. |
na.action |
a function which indicates what should happen when the data
contain |
subset |
an optional vector specifying a subset of observations to be used. |
Q |
Number of quadrature points used for Gauss-Hermite quadrature |
... |
A list of control parameters,
|
Models for mml
are specified symbolically. A typical model
has the form ~item1 + item2
where the terms to the right of the
~
are the columns of the data matrix containing the binary item responses.
A list with class "mml"
containing the following components:
Estimate |
the estimates of the population parameters |
Std.Error |
the standard error of the parameters |
Harold Doran
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | N <- 5
aa <- simRasch(200,N, mu=0, sigma=1)
tmp <- aa$data
b <- aa$gen
params <- list("3pl" = list(a = rep(1,N), b = b, c = rep(0,N)), "gpcm" = NULL)
colnames(tmp) <- paste('item', 1:5, sep='')
## Formula interface
fm1 <- mml(~ item1 + item2 + item3 + item4 + item5, data = tmp, params = params, control=list(D=1, startVal=c(0,1)))
summary(fm1)
coef(fm1)
## Default interface
fm1 <- mml(tmp, params = params, control=list(D=1, startVal=c(0,1)))
summary(fm1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.