predict.cv.PCLasso <-
function(object, x = NULL,
type = c("link", "response", "survival", "median", "norm", "coefficients",
"vars", "nvars","vars.unique", "nvars.unique", "groups", "ngroups"),
lambda, ...){
type <- match.arg(type)
if(type == "vars.unique"){
vars.tmp <- predict(object = object$cv.fit$fit,
type = "vars", lambda = lambda, ...)
if(is.list(vars.tmp)){
vars.list <- vector(mode = "list", length = length(vars.tmp))
names(vars.list) <- names(vars.tmp)
for(vars.list.i in 1:length(vars.tmp)){
if(length(vars.tmp[[vars.list.i]]) > 0){
vars.list[[vars.list.i]] <-
unique(ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp[[vars.list.i]]]))
}else{
vars.list[[vars.list.i]] <- vars.tmp[[vars.list.i]]
}
}
vars.list
}else{
if(length(lambda) > 1){ # 多个lambda,且每个lambda对应的特征数为1
vars.vector <- rep(NA, length = length(vars.tmp))
names(vars.vector) <- names(vars.tmp)
for(ii in 1:length(vars.tmp)){
vars.vector[ii] <-
ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp[ii]])
}
vars.vector
}else{ # 单个lambda
unique(ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp]))
}
}
}else if(type == "nvars.unique"){
vars.tmp <- predict(object = object$cv.fit$fit,
type = "vars", lambda = lambda, ...)
if(is.list(vars.tmp)){
vars.list <- vector(mode = "list", length = length(vars.tmp))
names(vars.list) <- names(vars.tmp)
nvars.vector <- rep(0, length = length(vars.tmp))
names(nvars.vector) <- names(vars.tmp)
for(vars.list.i in 1:length(vars.tmp)){
if(length(vars.tmp[[vars.list.i]]) > 0){
vars.list[[vars.list.i]] <-
unique(ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp[[vars.list.i]]]))
nvars.vector[vars.list.i] <-
length(vars.list[[vars.list.i]])
}
}
nvars.vector
}else{
if(length(lambda) > 1){ # 多个lambda,且每个lambda对应的特征数为1
nvars.vector <- rep(NA, length = length(vars.tmp))
names(nvars.vector) <- names(vars.tmp)
for(ii in 1:length(vars.tmp)){
nvars.vector[ii] <-
length(ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp[ii]]))
}
nvars.vector
}else{
length(unique(ext2EntrezID(rownames(object$cv.fit$fit$beta)[vars.tmp])))
}
}
}else{
if(is.null(x)){
predict(object = object$cv.fit$fit, type = type,
lambda = lambda, ...)
}else{
# extended genes
commonFeat.ext <- unlist(object$group.dt)
# New names of extended genes
# The new name consists of "group+.+gene name"
commonFeat.extName <- c()
for(i in 1:length(object$group.dt)){
names.i <- paste0(names(object$group.dt)[i], ".",
object$group.dt[[i]])
commonFeat.extName <- c(commonFeat.extName, names.i)
}
# extended dataset
x.ext <- x[, commonFeat.ext]
colnames(x.ext) <- commonFeat.extName
predict(object = object$cv.fit$fit, X = x.ext,
type = type, lambda = lambda, ...)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.