#' Make predictions from a PCLasso model
#'
#' @description Similar to other predict methods, this function returns
#' predictions from a fitted \code{PCLasso} object.
#'
#' @param object Fitted \code{PCLasso} model object.
#' @param x Matrix of values at which predictions are to be made. The features
#' (genes) contained in \code{x} should be consistent with those contained in
#' \code{x} in the \code{PCLasso} function. Not used for type="coefficients"
#' or for some of the type settings in \code{predict}.
#' @param type Type of prediction: "link" returns the linear predictors;
#' "response" gives the risk (i.e., exp(link)); "vars" returns the indices for
#' the nonzero coefficients; "vars.unique" returns unique features (genes)
#' with nonzero coefficients (If a feature belongs to multiple groups and
#' multiple groups are selected, the feature will be repeatedly selected.
#' Compared with "var", "var.unique" will filter out repeated features.);
#' "groups" returns the groups with at least one nonzero coefficient; "nvars"
#' returns the number of nonzero coefficients; "nvars.unique" returens the
#' number of unique features (genes) with nonzero coefficients; "ngroups"
#' returns the number of groups with at least one nonzero coefficient; "norm"
#' returns the L2 norm of the coefficients in each group."survival" returns
#' the estimated survival function; "median" estimates median survival times.
#' @param lambda Values of the regularization parameter \code{lambda} at which
#' predictions are requested. For values of \code{lambda} not in the sequence
#' of fitted models, linear interpolation is used.
#' @param ... Arguments to be passed to \code{predict.grpsurv} in the R package
#' \code{grpreg}.
#' @details
#' See \code{predict.grpsurv} in the R package \code{grpreg} for details.
#' @return The object returned depends on \code{type}.
#' @seealso \code{\link{PCLasso}}
#' @export
#'
#' @examples
#' # load data
#' data(GBM)
#' data(PCGroup)
#'
#' fit1 <- PCLasso(x = GBM$GBM.train$Exp, y = GBM$GBM.train$survData, group =
#' PCGroup)
#'
#' # predict risk scores of samples in x.test
#' s <- predict(object = fit1, x = GBM$GBM.test$Exp, type="link",
#' lambda=fit1$fit$lambda)
#'
#' s <- predict(object = fit1, x = GBM$GBM.test$Exp, type="link",
#' lambda=fit1$fit$lambda[10])
#'
#' s <- predict(object = fit1, x = GBM$GBM.test$Exp, type="link", lambda=c(0.1,
#' 0.01))
#'
#' # Nonzero coefficients
#' sel.groups <- predict(object = fit1, type="groups",
#' lambda = fit1$fit$lambda)
#' sel.ngroups <- predict(object = fit1, type="ngroups",
#' lambda = fit1$fit$lambda)
#' sel.vars.unique <- predict(object = fit1, type="vars.unique",
#' lambda = fit1$fit$lambda)
#' sel.nvars.unique <- predict(object = fit1, type="nvars.unique",
#' lambda = fit1$fit$lambda)
#' sel.vars <- predict(object = fit1, type="vars",
#' lambda=fit1$fit$lambda)
#' sel.nvars <- predict(object = fit1, type="nvars",
#' lambda=fit1$fit$lambda)
#'
#' # For values of lambda not in the sequence of fitted models,
#' # linear interpolation is used.
#' sel.groups <- predict(object = fit1, type="groups",
#' lambda = c(0.1, 0.01))
#' sel.ngroups <- predict(object = fit1, type="ngroups",
#' lambda = c(0.1, 0.01))
#' sel.vars.unique <- predict(object = fit1, type="vars.unique",
#' lambda = c(0.1, 0.01))
#' sel.nvars.unique <- predict(object = fit1, type="nvars.unique",
#' lambda = c(0.1, 0.01))
#' sel.vars <- predict(object = fit1, type="vars",
#' lambda=c(0.1, 0.01))
#' sel.nvars <- predict(object = fit1, type="nvars",
#' lambda=c(0.1, 0.01))
#'
predict.PCLasso <-
function(object, x = NULL,
type = c("link", "response", "survival", "median", "norm", "coefficients",
"vars", "nvars","vars.unique", "nvars.unique", "groups", "ngroups"),
lambda, ...){
type <- match.arg(type)
if(type == "vars.unique"){
vars.tmp <- predict(object = object$fit,
type = "vars", lambda = lambda, ...)
if(is.list(vars.tmp)){
vars.list <- vector(mode = "list", length = length(vars.tmp))
names(vars.list) <- names(vars.tmp)
for(vars.list.i in 1:length(vars.tmp)){
if(length(vars.tmp[[vars.list.i]]) > 0){
vars.list[[vars.list.i]] <-
unique(ext2EntrezID(rownames(object$fit$beta)[vars.tmp[[vars.list.i]]]))
}else{
vars.list[[vars.list.i]] <- vars.tmp[[vars.list.i]]
}
}
vars.list
}else{if(length(lambda) > 1){
vars.vector <- rep(NA, length = length(vars.tmp))
names(vars.vector) <- names(vars.tmp)
for(ii in 1:length(vars.tmp)){
vars.vector[ii] <-
ext2EntrezID(rownames(object$fit$beta)[vars.tmp[ii]])
}
vars.vector
}else{
unique(ext2EntrezID(rownames(object$fit$beta)[vars.tmp]))
}
}
}else if(type == "nvars.unique"){
vars.tmp <- predict(object = object$fit,
type = "vars", lambda = lambda, ...)
if(is.list(vars.tmp)){
vars.list <- vector(mode = "list", length = length(vars.tmp))
names(vars.list) <- names(vars.tmp)
nvars.vector <- rep(0, length = length(vars.tmp))
names(nvars.vector) <- names(vars.tmp)
for(vars.list.i in 1:length(vars.tmp)){
if(length(vars.tmp[[vars.list.i]]) > 0){
vars.list[[vars.list.i]] <-
unique(ext2EntrezID(rownames(object$fit$beta)[vars.tmp[[vars.list.i]]]))
nvars.vector[vars.list.i] <-
length(vars.list[[vars.list.i]])
}
}
nvars.vector
}else{
if(length(lambda) > 1){
nvars.vector <- rep(NA, length = length(vars.tmp))
names(nvars.vector) <- names(vars.tmp)
for(ii in 1:length(vars.tmp)){
nvars.vector[ii] <-
length(ext2EntrezID(rownames(object$fit$beta)[vars.tmp[ii]]))
}
nvars.vector
}else{
length(unique(ext2EntrezID(rownames(object$fit$beta)[vars.tmp])))
}
}
}else{
if(is.null(x)){
predict(object = object$fit, type = type,
lambda = lambda, ...)
}else{
# extended genes
commonFeat.ext <- unlist(object$group.dt)
# New names of extended genes
# The new name consists of "group+.+gene name"
commonFeat.extName <- c()
for(i in 1:length(object$group.dt)){
names.i <- paste0(names(object$group.dt)[i], ".",
object$group.dt[[i]])
commonFeat.extName <- c(commonFeat.extName, names.i)
}
# extended dataset
x.ext <- x[, commonFeat.ext]
colnames(x.ext) <- commonFeat.extName
predict(object = object$fit, X = x.ext,
type = type, lambda = lambda, ...)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.