Description Usage Arguments Value Author(s) References Examples
View source: R/check_study_data_frame.R
Check various characteristics of the study data frame before fitting longitudinal models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | check_study_data_frame(
input_data_frame,
study_id_name = NULL,
studyProtocol_name = NULL,
return_all_columns = FALSE,
converted_factor_order = c("observed", "alphanumeric"),
order_rows = TRUE,
freeze_factor = TRUE,
autoconvert_types = TRUE,
print_warnings = TRUE,
return_unique = TRUE,
group_name = maeve_options("group_name"),
subject_ID = maeve_options("subject_ID"),
x_name = maeve_options("x_name"),
endpoint_name = maeve_options("endpoint_name"),
reference_Dunnett = maeve_options("reference_Dunnett"),
progress = maeve_options("progress"),
abbreviate_n = maeve_options("abbreviate_n")
)
|
input_data_frame |
a data.frame with raw data from DIVOS. |
study_id_name |
character string with name of study (usually a 4- or 5-digit number). |
studyProtocol_name |
character string with name of study protocol (e.g., a LASAR protocol). |
return_all_columns |
logical: return all the columns in the processed data.frame, or just a minimally required subset? |
converted_factor_order |
character string: either 'observed' or 'alphanumeric' for whether fields (usually numeric or character) should be leveled in order of values observed or by unique alphanumeric value. |
order_rows |
logical: Should rows in returned data.frame be ordered by group, then ID, then time? |
freeze_factor |
logical: Should factors levels be set to the order observed in the returned data.frame? |
autoconvert_types |
logical. Automatically convert (1) "character" for group_name to "factor", (2) "integer" or "numeric" for subject_ID to factor(character()), (3) "integer" for x_name to "numeric"? |
print_warnings |
logical. Print warnings if automatic conversions are taking place? |
return_unique |
logical. Return only the unique rows based on the columns extracted? |
group_name |
character column name for the group name factor |
subject_ID |
character column name for the subject name factor |
x_name |
character column name for the x-axis / time field |
endpoint_name |
character column name for the x-axis / time field |
reference_Dunnett |
character string with the group factor level to use as Dunnett reference. If NULL, the first level should be used. |
progress |
logical. Print out various progress messages from the functions. |
abbreviate_n |
numeric. Maximum number of characters in a group name. |
An R data.frame
Bill Forrest <forrest@gene.com>
Bill Forrest forrest@gene.com
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | cat('exmaples in dontrun{} code block.')
## Not run:
### (1) Will generate a (typically harmless) warning that 'x' is class 'integer',
### but converted to 'numeric':
fake_data_01 = expand.grid( ID = paste0('ID_0',1:6) , x = as.integer( 1:5 ) )
fake_data_01 = dplyr::arrange( fake_data_01 , ID )
fake_data_01 = cbind( fake_study_id = 'fake',
grp = rep( c('grp_01','grp_02'), each = 15 ),
fake_data_01,
resp = rnorm(30),
dreck = 'drop_this!' )
checked_data_01 = check_study_data_frame(
fake_data_01,
group_name = 'grp',
subject_ID = 'ID',
x_name = 'x',
endpoint_name = 'resp',
study_id_name = 'fake_study_id' )
### (2) Avoid the warning by creating 'x' as numeric instead of integer:
fake_data_02 = fake_data_01;
fake_data_02$x <- as.numeric( fake_data_02$x ) # explicitly set to 'numeric'
checked_data_02 = check_study_data_frame(
fake_data_02,
group_name = 'grp',
subject_ID = 'ID',
x_name = 'x',
endpoint_name = 'resp',
study_id_name = 'fake_study_id' )
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.