HuberENET_SP | R Documentation |
HuberENET_SP(X, y, alphas, n_lambda, ratio=1e-2, B = 500, gamma = 1000, niter = 2000, crit_beta = 1e-04, crit_obj = 1e-08, timer = TRUE)
X |
expressional levels of n_genes target genes (TGs) |
y |
expressional levels of a transcription factor (TF) |
alphas |
the grid sets of alpha (in [0,1]) used to calculate selection probabilities of genes. |
n_lambda |
the number of lambdas |
ratio |
the ratio of the smallest lambda. default: 0.01 |
B |
the number of half-sample resamplings used to calculate selection probabilities of genes. default: 500 |
gamma |
initial value of gamma in APGD. default: 1000 |
niter |
the maximum number of APGD to solve Huber Elastic Net regression. default: 2000 |
crit_beta |
converge criterion of change of beta. default: 1e-4 |
crit_obj |
converge criterion of change of objective function. default: 1e-8 |
timer |
decide if exist the output report. default: FALSE |
SP |
n_genes length vector of selection probability. |
alphas <- seq(0.1,0.9,0.1)
n_lambda <- 10
B0 <- 100
ratio <- 0.01
SP_HuberENET = HuberENET_SP(X, y, alphas, n_lambda, ratio, B=B0, gamma=1000, niter=2000, timer=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.