MSEENET_Beta: Estimate beta_hat using MSE loss function along with Elastic...

View source: R/MSEENET_Beta.R

MSEENET_BetaR Documentation

Estimate beta_hat using MSE loss function along with Elastic Net penalty function

Usage

MSEENET_Beta(X, y, lambda0, alpha0, method = "APGD", gamma = 1000, niter = 2000, crit_beta = 1e-04, crit_obj = 1e-08, quiet = FALSE, if.scale=FALSE)

Arguments

X

expressional levels of n_genes target genes (TGs)

y

expressional levels of a transcription factor (TF)

lambda0

lambda0 one of parameters in Elastic Net regression, which controls the number of nonzero coefficients.

alpha0

alpha0 one of parameters in Elastic Net regression, which controls the numerical values of nonzero coefficients.

method

method The current methods must be 'APGD' or 'CVX'

gamma

gamma initial value of gamma in APGD. default: 1000

niter

niter the maximum number of APGD to solve Elastic Net regression. default: 2000

crit_beta

crit_beta converge criterion of change of beta. default: 1e-4

crit_obj

crit_obj converge criterion of change of objective function. default: 1e-8

quiet

quiet decide if exist the output report. default: FALSE

if.scale

if.scale decide if scale the expression levels. default: FALSE

Value

beta

n_genes length vector of estimated regulated effect sizes, where beta_j != 0 indicates j th gene is not selected in ENET regression.

Examples


lambda0 = 200
 
alpha0 = 0.5
 
beta_hat_APGD <- MSEENET_Beta(X, y, lambda0, alpha0, method="APGD", if.scale=TRUE)
 
library("CVXR")
 
beta_hat_CVX <- MSEENET_Beta(X, y, lambda0, alpha0,method="CVX", if.scale=TRUE)

xueweic/APGD documentation built on Sept. 4, 2023, 2:18 a.m.