MSENet_Beta: Estimate beta_hat using MSE loss function along with Net...

View source: R/MSENet_Beta.R

MSENet_BetaR Documentation

Estimate beta_hat using MSE loss function along with Net penalty function

Usage

MSENet_Beta(X, y, Adj, lambda0, alpha0, method = "APGD", gamma = 1000, niter = 2000, crit_beta = 1e-04, crit_obj = 1e-08, quiet = FALSE, if.scale=FALSE)

Arguments

X

expressional levels of n_genes target genes (TGs)

y

expressional levels of a transcription factor (TF)

Adj

the adjacency matrix of network structure.

lambda0

one of parameters in Net regression, which controls the number of nonzero coefficients.

alpha0

one of parameters in Net regression, which controls the numerical values of nonzero coefficients.

method

The current methods must be 'APGD' or 'CVX'

gamma

initial value of gamma in APGD. default: 1000

niter

the maximum number of APGD to solve HuberNet regression. default: 2000

crit_beta

converge criterion of change of beta. default: 1e-4

crit_obj

converge criterion of change of objective function. default: 1e-8

quiet

decide if exist the output report. default: FALSE

if.scale

if.scale decide if scale the expression levels. default: FALSE

Value

beta

n_genes length vector of estimated regulated effect sizes, where beta_j != 0 indicates j th gene is not selected in Net regression.

Examples

lambda0 = 200
  
alpha0 = 0.5
  
beta_hat_APGD <- MSENet_Beta(X, y, Adj, lambda0, alpha0,method="APGD", if.scale=TRUE)
  
library("CVXR")
  
beta_hat_CVX <- MSENet_Beta(X, y, Adj,lambda0, alpha0,method="CVX", if.scale=TRUE)


xueweic/APGD documentation built on Sept. 4, 2023, 2:18 a.m.