SimulationData: Simulate y and X from a given network structure.

View source: R/SimulationData.R

SimulationDataR Documentation

Simulate y and X from a given network structure.

Usage

SimulationData(N_samples, N_genes, Adj, Sigma, method, beta0=NULL, beta_true=NULL)

Arguments

N_samples

the number of sample size.

N_genes

the number of traget genes.

Adj

the adjacency matrix of network structure. Adjacency matrix must be a N_genes*N_genes dimensional symmetric matrix, the elements equal 1 indicates two genes are connected. If you consider Barabasi-Albert Network or Hierarchical Network in the article, you can directly use "ConstructNetwork" function to get the adjacency matrix.

Sigma

the covariance matrix of target genes according to network structure. You can directly use "GraphicalModel" function to get the covariance matrix.

method

"HN": by Hierarchical Network, "BAN": by Barabasi-Albert Network or "DIY": by user designed

beta0

numeric value of effect size in simulation settings. # default: NULL; if method is "HN" or "BAN", input a nunerical value.

beta_true

numeric matrix with the dimension of N_genes * 1 in simulation settings. # default: NULL; if method is "DIY", input a nunerical matrix (N_genes * 1).

Value

y

expression levels of a transcription factor (TF)

X

expression levels of n_genes target genes (TGs)

beta

true regulated effect beta for N_genes TGs.

Examples


N_samples <- 300
    
N_genes <- 200
    
Adj = ConstructNetwork(N_genes, "BAN")
    
Sigma1 = GraphicalModel(Adj)

    # Set up a true regression coefficient for simulated data (beta0=1)
res = SimulationData(N_samples,N_genes,Adj,Sigma1,"BAN", beta0 = 1)
    
y = res$y
    
X = res$X
    
beta1 = res$beta

xueweic/APGD documentation built on Sept. 4, 2023, 2:18 a.m.