R/import-dada2.R

Defines functions import_dada2

Documented in import_dada2

# This function is modified from import_dada2.R in MicrobiotaProcess
# https://github.com/YuLab-SMU/MicrobiotaProcess/blob/master/R/import_dada2.R

#' Import function to read the the output of dada2 as phyloseq object
#'
#' Import the output of dada2 into phyloseq object
#'
#' @param seq_tab matrix-like, ASV table, the output of
#' `dada2::removeBimeraDenovo`.
#' @param tax_tab matrix, taxonomy table, the output of
#' `dada2::assignTaxonomy` or `dada2::addSpecies`.
#' @param sam_tab data.frame or [`phyloseq::sample_data-class`], sample data
#' @param phy_tree [`ape::phylo`] class or character represents the path of
#'   the tree file
#' @param keep_taxa_rows logical, whether keep taxa in rows or not in the
#'   `otu_table` of the returned `phyloseq` object, default `TRUE`.
#' @details
#' The output of the dada2 pipeline is a feature table of amplicon sequence
#' variants (an ASV table): A matrix with rows corresponding to samples and
#' columns to ASVs, in which the value of each entry is the number of times
#' that ASV was observed in that sample. This table is analogous to the
#' traditional OTU table. Conveniently, taxa names are saved as ASV1, ASV2,
#' ..., in the returned phyloseq object.
#' @importFrom phyloseq sample_data read_tree
#' @importMethodsFrom phyloseq t
#' @return [`phyloseq::phyloseq-class`] object hold the taxonomy info,
#'   sample metadata, number of reads per ASV.
#' @export
#'
#' @examples
#' seq_tab <- readRDS(system.file("extdata", "dada2_seqtab.rds",
#'     package = "microbiomeMarker"
#' ))
#' tax_tab <- readRDS(system.file("extdata", "dada2_taxtab.rds",
#'     package = "microbiomeMarker"
#' ))
#' sam_tab <- read.table(system.file("extdata", "dada2_samdata.txt",
#'     package = "microbiomeMarker"
#' ), sep = "\t", header = TRUE, row.names = 1)
#' ps <- import_dada2(seq_tab = seq_tab, tax_tab = tax_tab, sam_tab = sam_tab)
#' ps
import_dada2 <- function(seq_tab,
    tax_tab = NULL,
    sam_tab = NULL,
    phy_tree = NULL,
    keep_taxa_rows = TRUE) {
    # refseq
    refseq <- colnames(seq_tab)
    # set refseq and taxa names to ASV_1, ASV_2,...
    refseq_nm <- paste0("ASV", seq_along(refseq))
    colnames(seq_tab) <- refseq_nm
    names(refseq) <- refseq_nm

    if (!is.null(tax_tab)) {
        if (!identical(refseq_nm, row.names(tax_tab))) {
            tax_tab <- tax_tab[match(refseq, row.names(tax_tab)), , 
                drop = FALSE]
        }
        row.names(tax_tab) <- refseq_nm
        tax_tab <- tax_table(as.matrix(tax_tab))
    }

    # refseq to XStringSet
    refseq <- Biostrings::DNAStringSet(refseq)

    if (!is.null(sam_tab)) {
        sam_tab <- sample_data(sam_tab)
    }

    if (!is.null(phy_tree) && inherits(phy_tree, "character")) {
        phy_tree <- read_tree(phy_tree)
    }

    asv_tab <- otu_table(seq_tab, taxa_are_rows = FALSE)
    ps <- phyloseq(asv_tab, tax_tab, sam_tab, phy_tree, refseq)

    if (keep_taxa_rows) {
        ps <- t(ps)
    }

    ps
}
yiluheihei/microbiomeMarker documentation built on Nov. 5, 2023, 7:19 a.m.