R/select_cell_lines.R

Defines functions select_cell_lines

Documented in select_cell_lines

#' Select mutant groups based on input gene of interest
#' 
#' @description
#' `select_cell_lines()` assigns cancer cell lines to either `Control` groups or one of the following mutant groups: `HomDel`,
#' `T-HetDel`, `HetDel`, `Amplified`, or `Others` (see details).
#' 
#' @param input_gene string as Hugo Symbol
#' @param input_aa_change string Amino acid change (eg. "A387A"). input_gene must be specified
#' @param input_disease string Cancer type listed in `list_available_cancer_types()`
#' @param input_disease_subtype string Cancer subtype listed in `list_available_cancer_subtypes()`
#' @param data_dir string Path to GINIR_data
#' 
#' @return Data frame containing a summary of mutations found in cell lines and their control and mutant group assignments.
#' @import rlang
#' @import dplyr
#' @import utils
#' @import stringr
#' 
#' @export
#' @details 
#' Mutant groups in more detail when only `input_gene` is defined: 
#' * `Control` cell lines do not harbor any single nucleotide variations (SNVs) or insertions and deletions (InDels) with a neutral copy number (CN).
#' * `HomDel` cell lines harbor one or more homozygous deleterious SNVs or have deep CN loss.
#' * `T-HetDel` cell lines harbor two or more heterozygous deleterious SNVs/InDels with neutral or CN loss.
#' * `HetDel` cell lines harbor one heterozygous deleterious SNV/InDel with neutral CN, or no SNV/InDel with CN loss. 
#' * `Amplified` cell lines harbor no SNVs/InDels with increased CN.
#' * `Others` cell lines harbor deleterious SNVs with increased CN.
#' 
#' If input_aa_change` is also defined:
#' * `Control` cell lines do not harbor any single nucleotide variations (SNVs) or insertions and deletions (InDels) with a neutral copy number (CN).
#' * `HomAlt` cell lines harbor a homozygous alteration for the specified mutation.
#' * `HetAlt` cell lines harbor a heterozygous alteration for the specified mutation.
#' * `_CNneutral`, `_CNamplified`, and `_CNloss` define copy number (CN) status of the above mutation states. 
#' * `Others` cell lines that do not meet above criteria.
#' 
#' @examples
#' gretta_data_dir <- './GRETTA_example/'
#' gretta_output_dir <- './GRETTA_example_output/'
#' 
#' if(!dir.exists(gretta_data_dir)){
#'   download_example_data(".")
#' }
#' 
#' select_cell_lines(input_gene = "ARID1A", 
#' input_disease = "Lung Cancer", 
#' data_dir = gretta_data_dir)
#' 

select_cell_lines <- function(input_gene = NULL, input_aa_change = NULL, input_disease = NULL, input_disease_subtype = NULL, data_dir = NULL){
  
  # Print and check to see input
  if(is.null(c(input_gene, input_disease, input_disease_subtype))){
    stop("No input given. Please prvide a Hugo gene symbol and/or cancer type")
    
  } else if(is.null(c(input_gene, input_disease)) & !is.null(input_disease_subtype)){
    stop("No cancer context provided. Please define the `disease` argument.")
    
  } else if(is.null(input_gene) & !is.null(input_aa_change)){
    stop("AA change was provided, ", input_aa_change,", 
         but no gene was provided. Please define input_gene!")
    
  } else if(is.null(c(input_disease, input_disease_subtype)) & !is.null(input_gene)){
    message("Selecting mutant groups for: ", paste0(input_gene, collapse = ", "), " in all cancer cell lines")
    
  } else if(!is.null(c(input_gene, input_disease, input_disease_subtype))){
    message("Selecting mutant groups for: ", paste0(input_gene, collapse = ", "), " in ", input_disease,", ", 
            input_disease_subtype, " cell lines")
    
  } else if(is.null(input_disease_subtype) & !is.null(c(input_gene, input_disease))){
    message("Selecting mutant groups for: ", input_gene, " in ", input_disease, " cell lines")
    
  } else if(is.null(input_gene) & !is.null(c(input_disease, input_disease_subtype))){
    message("Selecting all ", input_disease, ", ", input_disease_subtype, " cancer cell lines")
    
  } else if(is.null(c(input_gene, input_disease_subtype)) & !is.null(input_disease)){
    message("Selecting all ", input_disease, " cancer cell lines")
    
  } else {
    stop("Issue with input.")
    
  }
  if(is.null(data_dir)){
    stop("No directory to data was specified. Please provide path to DepMap data.")
  }
  if(!dir.exists(data_dir)){
    stop("DepMap data directory does not exists.",
         "Please check again and provide the full path to the DepMap data directory.")
  }
  
  # If input_gene is provided look for mutations:
  if(!is.null(input_gene)){
    
    # Load necessary data
    mut_calls <- copy_num_annot <- copy_num <- dep <- sample_annot <- NULL
    # see: https://support.bioconductor.org/p/24756/
    load(paste0(data_dir, "/mut_calls.rda"), envir = environment())
    load(paste0(data_dir, "/copy_num_annot.rda"), envir = environment())
    load(paste0(data_dir, "/copy_num.rda"), envir = environment())
    load(paste0(data_dir, "/dep.rda"), envir = environment())
    load(paste0(data_dir, "/sample_annot.rda"), envir = environment())
    
    # Check if input gene mutations exist
    if(!any(mut_calls$Hugo_Symbol %in% input_gene) &
       !any(copy_num_annot$GeneNames %in% input_gene)){
      stop("No mutations were found for: ", input_gene,
           ". Please check spelling and for valid Hugo Symbols")
    }
    # Convert to unique geneID
    input_geneID <- copy_num_annot %>% 
      filter(.data$GeneNames == input_gene) %>% 
      pull(GeneNameID)
    
    # Get copy number
    # Fix names if needed
    test <- grep("\\(", names(copy_num))
    if(length(test) != 0){
      # needs fixing
      fix1 <- stringr::str_replace_all(string = names(copy_num), pattern = "\\ \\(", "_")
      fix2 <- stringr::str_replace_all(string = fix1, pattern = "\\)", "")
      names(copy_num) <- fix2
    }
    
    if(any(names(copy_num) %in% input_geneID)){
      target_copy_num <- copy_num %>%
        dplyr::select(.data$DepMap_ID, dplyr::all_of(input_geneID)) %>%
        dplyr::filter(.data$DepMap_ID %in% dep$DepMap_ID) %>%
        dplyr::arrange(.data$DepMap_ID) %>%
        dplyr::mutate( Status = dplyr::case_when(
          !!as.name(input_geneID) <= 0.25 ~ "Deep_del",
          !!as.name(input_geneID) > 0.25 & !!as.name(input_geneID) < 0.75 ~ "Loss",
          !!as.name(input_geneID) >= 0.75 & !!as.name(input_geneID) < 1.25 ~ "Neutral",
          !!as.name(input_geneID) >= 1.25 ~ "Amplified",
          TRUE ~ "Other"))
      
    } else {
      target_copy_num <- dep %>% 
        dplyr::select(.data$DepMap_ID) %>%
        dplyr::arrange(.data$DepMap_ID) %>%
        dplyr::mutate(!!as.name(input_geneID) := NA,
                      Status = "Unknown")
    }
    
    # Get ALL Mutations
    target_mut <- mut_calls %>%
      dplyr::filter((.data$DepMap_ID %in% dep$DepMap_ID) & 
                      (.data$Hugo_Symbol %in% input_gene))
    
    # pre-23Q: Only some mut_calls contain a "SangerRecalibWES_AC" column
    if(any(colnames(target_mut) %in% "SangerRecalibWES_AC")){
      target_mut <- target_mut %>% 
        dplyr::mutate(AC_combined = dplyr::coalesce(.data$CGA_WES_AC, .data$SangerRecalibWES_AC, 
                                                    .data$SangerWES_AC, .data$RNAseq_AC, .data$HC_AC, 
                                                    .data$RD_AC, .data$WGS_AC), #(Alt:REF)
                      AC_ref_NULL = grepl(":0", .data$AC_combined)) %>%
        dplyr::mutate(AC_Variant = dplyr::case_when(
          .data$AC_ref_NULL == "TRUE" ~ "Hom_Mut",
          TRUE ~ "Het_Mut"),
          AC_Variant = paste0(.data$Variant_Classification," ", .data$AC_Variant)) %>% # are there any with 0 contribution from reference?
        dplyr::select(.data$DepMap_ID, .data$Hugo_Symbol, .data$Chromosome, .data$Start_position, 
                      .data$End_position, .data$Strand, .data$Variant_Classification, .data$Variant_Type, 
                      .data$Reference_Allele, .data$Tumor_Seq_Allele1, .data$dbSNP_RS, .data$dbSNP_Val_Status, 
                      .data$Genome_Change, .data$Annotation_Transcript, .data$cDNA_Change, .data$Codon_Change, 
                      .data$Protein_Change, .data$isDeleterious, .data$isTCGAhotspot, 
                      .data$TCGAhsCnt, .data$isCOSMIChotspot, .data$COSMIChsCnt, .data$Variant_annotation, 
                      .data$AC_combined, .data$AC_ref_NULL, .data$AC_Variant) %>%
        dplyr::arrange(.data$Start_position) %>%
        dplyr::distinct()
      
    } else if(any(colnames(target_mut) %in% "SangerWES_AC")){
      # pre-23Q: if no "SangerRecalibWES_AC" column
      target_mut <- target_mut %>% 
        dplyr::mutate(AC_combined = dplyr::coalesce(.data$CGA_WES_AC, .data$SangerWES_AC, .data$RNAseq_AC, 
                                                    .data$HC_AC, .data$RD_AC, .data$WGS_AC), #(Alt:REF)
                      AC_ref_NULL = grepl(":0", .data$AC_combined)) %>%
        dplyr::mutate(AC_Variant = dplyr::case_when(
          .data$AC_ref_NULL == "TRUE" ~ "Hom_Mut",
          TRUE ~ "Het_Mut"),
          AC_Variant = paste0(.data$Variant_Classification," ", .data$AC_Variant)) %>% # are there any with 0 contribution from reference?
        dplyr::select(.data$DepMap_ID, .data$Hugo_Symbol, .data$Chromosome, .data$Start_position, 
                      .data$End_position, 
                      .data$Strand, .data$Variant_Classification, .data$Variant_Type, .data$Reference_Allele, 
                      .data$Alternate_Allele, .data$dbSNP_RS, .data$dbSNP_Val_Status, .data$Genome_Change, 
                      .data$Annotation_Transcript, 
                      .data$cDNA_Change, .data$Codon_Change, .data$Protein_Change, .data$isDeleterious, 
                      .data$isTCGAhotspot, 
                      .data$TCGAhsCnt, .data$isCOSMIChotspot, .data$COSMIChsCnt, .data$Variant_annotation, 
                      .data$AC_combined, 
                      .data$AC_ref_NULL, .data$AC_Variant) %>%
        dplyr::arrange(.data$Start_position) %>%
        dplyr::distinct()
      
    } else if(any(colnames(target_mut) %in% "GT")){
      # post-23Q
      target_mut <- target_mut %>% 
        dplyr::mutate(AC_Variant = dplyr::case_when(
          .data$GT == "1|1" ~ "Hom_mut",
          TRUE ~ "Het_Mut"),
          AC_Variant = paste0(.data$VariantInfo," ", .data$AC_Variant)) %>% # are there any with 0 contribution from reference?
        dplyr::rename(Chromosome = .data$Chrom, Start_position = .data$Pos, Protein_Change = .data$ProteinChange) %>%
        dplyr::select(.data$DepMap_ID, .data$Hugo_Symbol, .data$Chromosome, .data$Start_position, .data$Ref:.data$EntrezGeneID, .data$AC_Variant) %>%
        dplyr::arrange(.data$Start_position) %>% 
        dplyr::distinct()
    }
    # Count number of mutations found per sample
    all_mutations_count_by_sample <- target_mut %>% dplyr::count(.data$DepMap_ID)
    
    # If specific mutations are defined 
    if(!is.null(input_aa_change)){
      
      if(!any(colnames(target_mut) %in% "GT")){ #if not 23Q4 data
        select_muts <- target_mut %>% 
          dplyr::filter(.data$Protein_Change %in% paste0("p.",input_aa_change)) %>%
          dplyr::select(.data$DepMap_ID:.data$Protein_Change, .data$Variant_annotation:.data$AC_Variant)
      } else { #if 23Q4 data
        select_muts <- target_mut %>% 
          dplyr::filter(.data$Protein_Change %in% paste0("p.",input_aa_change)) %>%
          dplyr::select(.data$DepMap_ID:.data$Protein_Change)
      }
      
      # Summarize mutations for all samples 
      # add OncotreeCode if post 23Q
      if(any(colnames(sample_annot) == "OncotreeCode")){
        summary <- sample_annot %>% 
          dplyr::filter(.data$DepMap_ID %in% dep$DepMap_ID) %>%
          dplyr::select(.data$DepMap_ID, .data$stripped_cell_line_name, .data$disease, .data$disease_subtype, 
                        .data$primary_or_metastasis, .data$OncotreeCode) %>%
          dplyr::left_join(all_mutations_count_by_sample, by = "DepMap_ID") %>%
          dplyr::rename(Total_mutations = .data$n) %>%
          dplyr::mutate(Total_mutations = dplyr::case_when(
            is.na(.data$Total_mutations) ~ as.double(0),
            TRUE ~  as.double(.data$Total_mutations))) %>%
          dplyr::left_join(target_copy_num %>% 
                             dplyr::select(.data$DepMap_ID, .data$Status), by = "DepMap_ID") %>%
          dplyr::rename(CN_status = .data$Status) %>%
          dplyr::left_join(select_muts)
      } else {
        summary <- sample_annot %>% 
          dplyr::filter(.data$DepMap_ID %in% dep$DepMap_ID) %>%
          dplyr::select(.data$DepMap_ID, .data$stripped_cell_line_name, .data$disease, .data$disease_subtype, 
                        .data$primary_or_metastasis) %>%
          dplyr::left_join(all_mutations_count_by_sample, by = "DepMap_ID") %>%
          dplyr::rename(Total_mutations = .data$n) %>%
          dplyr::mutate(Total_mutations = dplyr::case_when(
            is.na(.data$Total_mutations) ~ as.double(0),
            TRUE ~  as.double(.data$Total_mutations))) %>%
          dplyr::left_join(target_copy_num %>% 
                             dplyr::select(.data$DepMap_ID, .data$Status), by = "DepMap_ID") %>%
          dplyr::rename(CN_status = .data$Status) %>%
          dplyr::left_join(select_muts)
        
      }
      
      # Annotate mutant group types based on conditions
      if(!all(summary$CN_status == "Unknown")){
        
        if(!any(colnames(target_mut) %in% "GT")){ #if not 23Q4 data
          Groups <- summary %>% 
            dplyr::mutate(
              Group = dplyr::case_when(
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Neutral") &
                   (.data$AC_ref_NULL == TRUE)) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNneutral"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Amplified") &
                   (.data$AC_ref_NULL == TRUE)) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNamplified"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status %in% c("Loss","Deep_del")) &
                   (.data$AC_ref_NULL == TRUE)) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNloss"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Neutral") &
                   (.data$AC_ref_NULL == FALSE)) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNneutral"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Amplified") &
                   (.data$AC_ref_NULL == FALSE)) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNamplified"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status %in% c("Loss","Deep_del")) &
                   (.data$AC_ref_NULL == FALSE)) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNloss"),
                ((.data$Total_mutations == 0) &
                   (.data$CN_status == "Neutral")) ~ paste0(input_gene,"_", input_aa_change, "_Control_CNneutral"),
                ((.data$Total_mutations == 0) &
                   (.data$CN_status %in% c("Loss","Deep_del"))) ~ paste0(input_gene,"_", input_aa_change, "_Control_CNloss"),
                TRUE ~ "Others")) %>%
            dplyr::mutate(GeneNameID = input_geneID,
                          GeneName = input_gene)
        } else { #if 23Q4 data
          Groups <- summary %>% 
            dplyr::mutate(
              Group = dplyr::case_when(
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Neutral") &
                   (.data$GT == "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNneutral"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Amplified") &
                   (.data$GT == "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNamplified"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status %in% c("Loss","Deep_del")) &
                   (.data$GT == "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt_CNloss"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Neutral") &
                   (.data$GT != "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNneutral"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status == "Amplified") &
                   (.data$GT != "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNamplified"),
                (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                   (.data$CN_status %in% c("Loss","Deep_del")) &
                   (.data$GT != "1|1")) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt_CNloss"),
                ((.data$Total_mutations == 0) &
                   (.data$CN_status == "Neutral")) ~ paste0(input_gene,"_", input_aa_change, "_Control_CNneutral"),
                ((.data$Total_mutations == 0) &
                   (.data$CN_status %in% c("Loss","Deep_del"))) ~ paste0(input_gene,"_", input_aa_change, "_Control_CNloss"),
                TRUE ~ "Others")) %>%
            dplyr::mutate(GeneNameID = input_geneID,
                          GeneName = input_gene)
        }
      } else {
        Groups <- summary %>% 
          dplyr::mutate(
            Group = dplyr::case_when(
              (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                 (.data$AC_ref_NULL == TRUE)) ~ paste0(input_gene,"_", input_aa_change, "_HomAlt"),
              (.data$Protein_Change %in% paste0("p.",input_aa_change) & 
                 (.data$AC_ref_NULL == FALSE)) ~ paste0(input_gene,"_", input_aa_change, "_HetAlt"),
              (.data$Total_mutations == 0) ~ paste0(input_gene,"_", input_aa_change, "_Control"),
              TRUE ~ "Others")) %>%
          dplyr::mutate(GeneNameID = input_geneID,
                        GeneName = input_gene)
      }
      
    } else {
      # If no mutations are defined, find default deleterious mutations
      # Get deleterious/damaging mutations
      # If pre23Q
      if(any(colnames(target_mut) == "Variant_annotation")){
        mut_dels <- target_mut %>% 
          dplyr::filter(.data$Variant_annotation == "damaging") %>%
          dplyr::distinct()
        
      } else if(any(colnames(target_mut) == "LikelyLoF")){
        # If post23Q
        temp_dels <- target_mut %>% 
          dplyr:: filter(
            .data$LikelyLoF) %>% 
          dplyr::distinct()
        
        if(any(str_detect(temp_dels$VariantInfo, "splice"))){
          no_splice <- temp_dels %>% 
            dplyr::filter(!str_detect(.data$VariantInfo, "splice"))
          
          del_splice <- temp_dels %>% 
            dplyr::filter(str_detect(.data$VariantInfo, "splice"),
                          .data$VariantType != "SNV")
          mut_dels <- dplyr::bind_rows(no_splice, del_splice) %>%
            distinct()
        } else{
          mut_dels <- temp_dels
        }
      }
      
      # Count number of deleterious mutations found per sample
      del_mutations_count_by_sample <- mut_dels %>% dplyr::count(.data$DepMap_ID)
      
      # Find samples with homozygous deleterious mutations (HomDels)
      if(any(colnames(mut_dels) == "AC_ref_NULL")){
        hom_del_muts_by_sample <- mut_dels %>% 
          dplyr::select(.data$DepMap_ID, .data$AC_ref_NULL) %>%
          dplyr::distinct() %>%
          dplyr::filter(.data$AC_ref_NULL == TRUE)
      } else {
        hom_del_muts_by_sample <- mut_dels %>% 
          dplyr::select(.data$DepMap_ID, .data$GT) %>%
          dplyr::distinct() %>%
          dplyr::filter(.data$GT == "1|1")
      }
      
      
      # Find samples with multiple heterozygous deleterious mutations. Trans-heterozygous mutants (T-HetDels)
      if(any(colnames(mut_dels) == "AC_ref_NULL")){
        multi_mut_dels <- mut_dels %>%
          dplyr::filter(.data$AC_ref_NULL == FALSE) %>%
          dplyr::add_count(.data$DepMap_ID) %>% 
          dplyr::filter(.data$n > 1)
      } else {
        multi_mut_dels <- mut_dels %>% 
          dplyr::select(.data$DepMap_ID, .data$Start_position, .data$GT) %>%
          dplyr::filter(.data$GT != "1|1") %>% 
          dplyr::select(.data$DepMap_ID, .data$Start_position) %>%
          dplyr::distinct() %>%
          dplyr::add_count(.data$DepMap_ID) %>% 
          dplyr::filter(.data$n > 1)
      }
      
      # Summarize mutations for all samples 
      summary <- sample_annot %>% 
        dplyr::filter(.data$DepMap_ID %in% dep$DepMap_ID) %>%
        dplyr::select(.data$DepMap_ID, .data$stripped_cell_line_name, .data$disease, .data$disease_subtype, 
                      .data$primary_or_metastasis) %>%
        dplyr::left_join(all_mutations_count_by_sample, by = "DepMap_ID") %>%
        dplyr::rename(Total_mutations = .data$n) %>%
        dplyr::mutate(Total_mutations = dplyr::case_when(
          is.na(.data$Total_mutations) ~ as.double(0),
          TRUE ~  as.double(.data$Total_mutations))) %>%
        dplyr::left_join(del_mutations_count_by_sample, by = "DepMap_ID") %>%
        dplyr::rename(Del_mutations = .data$n) %>%
        dplyr::mutate(Del_mutations = dplyr::case_when(
          is.na(.data$Del_mutations) ~ as.double(0),
          TRUE ~ as.double(.data$Del_mutations)),
          Del_hom_mut = dplyr::case_when(
            .data$DepMap_ID %in% hom_del_muts_by_sample$DepMap_ID ~ TRUE,
            TRUE ~ FALSE)) %>%
        dplyr::left_join(target_copy_num %>% 
                           dplyr::select(.data$DepMap_ID, .data$Status), by = "DepMap_ID") %>%
        dplyr::rename(CN_status = .data$Status) %>% 
        dplyr::arrange(-.data$Del_mutations, -.data$Total_mutations, .data$CN_status)
      
      # Annotate mutant group types based on conditions
      if(!all(summary$CN_status == "Unknown")){
        Groups <- summary %>% 
          dplyr::mutate(
            Group = dplyr::case_when(
              ((.data$CN_status == "Deep_del") | (.data$Del_hom_mut == TRUE)) ~ paste0(input_gene,"_HomDel"),
              ((.data$Del_mutations > 1) & (.data$CN_status == "Neutral")) |
                ((.data$Del_mutations == 1) & (.data$CN_status == "Loss")) ~ paste0(input_gene,"_T-HetDel"),
              ((.data$Del_mutations == 1) & (.data$CN_status == "Neutral")) |
                ((.data$Del_mutations == 0) & (.data$CN_status == "Loss")) ~ paste0(input_gene,"_HetDel"),
              ((.data$Total_mutations == 0) & (.data$CN_status == "Neutral")) ~ "Control",
              ((.data$Total_mutations == 0) & (.data$CN_status == "Amplified")) ~ "Amplified",
              ((.data$Del_mutations == 1) & (.data$CN_status == "Amplified")) ~ "Others",
              TRUE ~ "Others")) %>%
          dplyr::mutate(GeneNameID = input_geneID,
                        GeneName = input_gene)
      } else {
        Groups <- summary %>% 
          dplyr::mutate(
            Group = dplyr::case_when(
              (.data$Del_hom_mut == TRUE) ~ paste0(input_gene,"_HomDel"),
              (.data$Del_mutations > 1) ~ paste0(input_gene,"_T-HetDel"),
              (.data$Del_mutations == 1) ~ paste0(input_gene,"_HetDel"),
              (.data$Total_mutations == 0) ~ "Control",
              TRUE ~ "Others")) %>%
          dplyr::mutate(GeneNameID = input_geneID,
                        GeneName = input_gene)
      }
    }
  } else {
    # Load necessary data
    sample_annot <- NULL # see: https://support.bioconductor.org/p/24756/
    data(list = list("sample_annot"), envir = environment())
  }
  
  # Output based on input conditions
  if(is.null(c(input_disease, input_disease_subtype)) & !is.null(input_gene)){
    output <- Groups
    
  } else if(is.null(input_disease_subtype) & !is.null(c(input_gene, input_disease))){
    output <- Groups %>% 
      dplyr::filter(.data$disease %in% input_disease)
    
  } else if(is.null(input_gene) & !is.null(c(input_disease, input_disease_subtype))){
    output <- sample_annot %>% 
      dplyr::select(.data$DepMap_ID, .data$stripped_cell_line_name, .data$disease, .data$disease_subtype, 
                    .data$primary_or_metastasis) %>%
      dplyr::filter(.data$disease %in% input_disease & 
                      .data$disease_subtype %in% input_disease_subtype)
    
  } else if(is.null(c(input_gene, input_disease_subtype)) & !is.null(input_disease)){
    output <- sample_annot %>% 
      dplyr::select(.data$DepMap_ID, .data$stripped_cell_line_name, .data$disease, .data$disease_subtype, 
                    .data$primary_or_metastasis) %>%
      dplyr::filter(.data$disease %in% input_disease)
    
  } else if(!is.null(c(input_gene, input_disease, input_disease_subtype))){
    output <- Groups %>% 
      dplyr::filter(.data$disease %in% input_disease &
                      .data$disease_subtype %in% input_disease_subtype)
    
  } else {
    stop("Issue with input")
  }
  
  # Check if output has both control and mutants
  # Print quick summary if no mutants were found
  if(!any(stringr::str_detect(output$Group, "Del|Alt")) | !any(stringr::str_detect(output$Group, "Control"))){
    message("No mutants or controls found! \n",
            "Check results and consider using different criteria")
    
  } 
  
  output <- output %>% dplyr::arrange(.data$DepMap_ID)
  return(output)
}
ytakemon/GINIR documentation built on Oct. 11, 2024, 6:06 a.m.