## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo=FALSE, message=FALSE, warning=FALSE---------------------------------
library(Wham)
dir <- system.file("extdata","biobakery_sample_input.tsv",package = "Wham")
countdata <- read.delim(dir)
knitr::kable(countdata[1:5,1:5])
## ----echo=FALSE---------------------------------------------------------------
dir.feature <- system.file("extdata","EBI_feature_input.tsv",package = "Wham")
featuretable <- read.delim(dir.feature)
dir.taxa <- system.file("extdata","EBI_taxa_input.tsv",package = "Wham")
taxatable <- read.delim(dir.taxa)
knitr::kable(featuretable [1:5,1:5])
## ----echo=FALSE---------------------------------------------------------------
taxatable_short = taxatable[1:5,1:5]
taxatable_short$Taxa = gsub("archaeota|nobacteria|anobacteriales|anobacteriaceae|anobrevibacter|ethanobrevibacter|ethanosphaera","",taxatable_short$Taxa)
knitr::kable(taxatable_short)
## ----fig.height=5, fig.width=5, message=FALSE---------------------------------
dir <- system.file("extdata","16s_phyloseq.rds",package = "Wham")
phy_object = readRDS(dir)
wham16s_object = WhamFrom16s(phyloseq_object = phy_object)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
dir.data <- system.file("extdata","biobakery_sample_input.tsv",package = "Wham")
countData <- read.delim(dir.data)
countData <- countData[1:2000,] #we subset the count table to reduce computational cost,
dir.meta = system.file("extdata","biobakery_sample_metadata.csv",package = "Wham")
metadata <- read.csv(dir.meta,row.names = 1)
wham_bbk <- WhamBiobakery(countData = countData,
colData = metadata,
DE = "taxa", ##required,choose taxa or feautre(gene family)
design = ~ Location, ##design formula to let function conduct tests on the group of interest,
taxa.level = "s", ##collapse the bacterial rank level when choosing DE as "taxa", default:"s"("speices")."otu" when analyze 16s,
contrast = c("Location","Stool","Arm") ##specify the comparison of interest: Stool(numerator) vs Arm(denominator) in 'Location' variable in metadata.
)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
wham_bbk_anova <- WhamBiobakery(countData = countData,
colData = metadata,
DE = "taxa", ##required,choose taxa or feautre(gene family)
design = ~Location, ##design formula to let function conduct tests on the group of interest,
taxa.level = "s", ##collapse the bacterial rank level when choosing DE as "taxa", default:"s"("speices")."otu" when analyze 16s,
aldex.module = "anova"
)
## ----message=FALSE, warning=FALSE---------------------------------------------
set.seed(123)
metadata$States = sample(c("LA","NY","CO"),47,replace = T)
wham_bbk_two_factor <- WhamBiobakery(countData = countData,
colData = metadata,
DE = "feature",
design = ~ Location + States, ##complex design
)
## -----------------------------------------------------------------------------
VolcanoPlot(wham_bbk)
## -----------------------------------------------------------------------------
TaxaBarPlot(wham_bbk,
filter = "all",
display.number = 30, ## only visualize top 30 abundant bacteria
taxa.level = "g", ## visualiazation will be collapsed at "genues level"
)
## -----------------------------------------------------------------------------
TaxaBarPlot(wham_bbk,
filter = "DE.filter", ## visualize based on statistics analysis
taxa.level = "g", ## all bacteria whose passed the statistic test will be collapsed at "genus level"
p.cutoff = 0.05,
effect.size.range = c(-1,1), ## setting appropriate range cutoff, the default range is c(0,0)
merge_group = T)
## -----------------------------------------------------------------------------
TaxaHeatmap(wham_bbk,
taxa.level = "s",
filter = "DE.filter",
effect.size.range = c(-0.5,0.5),
scale = T, ## default setting
column_split = c(rep("Arm",12),rep("Stool",12)), ## column_split is one of argument in Heatmap in ComplexHeatmap and compitle with other arguments; our demonstration comparison only contains 12 Arm samples and 11 Stool samples.
row_names_gp = grid::gpar(fontsize = 5)
)
## -----------------------------------------------------------------------------
TaxaHeatmap(wham_bbk,
taxa.level = "s",
filter = "DE.filter",
effect.size.range = c(-0.5,0.5),
scale = F, ## Using raw count
show_row_names = FALSE,
show_column_names = T)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
wham_bbk_feature <- WhamBiobakery(countData = countData,
colData = metadata, ##required, choose feautre(gene family)
DE = "feature",
design = ~ Location, ##design formula to let function conduct tests on the group of interest,
ref.contrast = c("Location","Arm")
)
FeatureHeatmap(wham_bbk_feature,
filter = "DE.filter",
scale = T,
column_names_gp = grid::gpar(fontsize = 7))
## ----fig.height=6, fig.width=6------------------------------------------------
FeatureCorr(wham_bbk_feature,
UseDE.result = T, ## we use results from differential analysis
effect.size.range = c(-1.5,1.5),
)
## ----echo=TRUE, fig.height=6, fig.width=6-------------------------------------
feature_selection = wham_bbk_feature@DE.result$name[1:10] ##select first 10 pathways
sample_selection = rownames(wham_bbk@colData)[1:25] ##select fist 25 samples
FeatureCorr(wham_bbk_feature,
feature = feature_selection,
group = sample_selection
)
## ----echo=TRUE----------------------------------------------------------------
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.