Description Usage Arguments Details Value Author(s) References Examples
Function to calculate the Local Outlier Factor (LOF) as an outlier score for observations. Suggested by Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000)
1 | LOF(dataset, k = 5)
|
dataset |
The dataset for which observations have an LOF score returned |
k |
The number of k-nearest neighbors to compare density with. k has to be smaller than number of observations in dataset |
LOF computes a local density for observations with a user-given k-nearest neighbors. The density is compared to the density of the respective nearest neighbors, resulting in the local outlier factor. A kd-tree is used for kNN computation, using the kNN() function from the 'dbscan' package. The LOF function is useful for outlier detection in clustering and other multidimensional domains
A vector of LOF scores for observations. The greater the LOF, the greater outlierness
Jacob H. Madsen
Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In Int. Conf. On Management of Data. Dallas, TX. pp. 93-104. DOI: 10.1145/342009.335388
1 2 3 4 5 6 7 8 9 10 11 12 | # Create dataset
X <- iris[,1:4]
# Find outliers by setting an optional k
outlier_score <- LOF(dataset=X, k=10)
# Sort and find index for most outlying observations
names(outlier_score) <- 1:nrow(X)
sort(outlier_score, decreasing = TRUE)
# Inspect the distribution of outlier scores
hist(outlier_score)
|
42 107 23 16 99 14 58 61
2.1401892 1.6923498 1.6528013 1.6070560 1.5303890 1.4684578 1.4649751 1.4608732
94 15 25 34 69 45 110 44
1.4366253 1.4358094 1.3304879 1.3292011 1.2802262 1.2771899 1.2761094 1.2676266
118 119 132 33 19 115 135 9
1.2640817 1.2613618 1.2609661 1.2580528 1.2538291 1.2448148 1.2289170 1.2258481
24 130 88 123 63 80 109 39
1.2186105 1.2152147 1.2097245 1.1936765 1.1911372 1.1887348 1.1793638 1.1775895
17 43 108 126 37 85 136 101
1.1684473 1.1647652 1.1523481 1.1513666 1.1505964 1.1465101 1.1450440 1.1422904
131 21 106 65 60 120 114 149
1.1421662 1.1418438 1.1366996 1.1354693 1.1289565 1.1278678 1.1200491 1.1183161
6 7 32 47 51 53 82 122
1.1171744 1.1137063 1.1052521 1.1023672 1.0987760 1.0980881 1.0899291 1.0810070
86 26 81 103 137 36 71 54
1.0791422 1.0752058 1.0729744 1.0699243 1.0565329 1.0561318 1.0557874 1.0547967
11 142 87 77 12 67 104 73
1.0505187 1.0475650 1.0441614 1.0426313 1.0396861 1.0388066 1.0376601 1.0359747
102 143 145 70 20 72 66 111
1.0339920 1.0339920 1.0315736 1.0313942 1.0277455 1.0271560 1.0262747 1.0229170
49 91 27 56 112 146 78 4
1.0224348 1.0167226 1.0147998 1.0123222 1.0116994 1.0116648 1.0115853 1.0082478
90 76 38 48 147 116 62 98
1.0064326 1.0061086 1.0053093 1.0035582 1.0023075 1.0018319 1.0006954 1.0004306
141 22 148 105 3 5 75 59
1.0002989 0.9993061 0.9991678 0.9982689 0.9981573 0.9976917 0.9973429 0.9971008
144 79 125 128 2 150 52 92
0.9963329 0.9953478 0.9946723 0.9944197 0.9933587 0.9921152 0.9908970 0.9901783
121 57 74 84 97 28 138 140
0.9895024 0.9876925 0.9871454 0.9852982 0.9852838 0.9848109 0.9848026 0.9847805
29 134 139 127 95 64 31 10
0.9847763 0.9833328 0.9831949 0.9807002 0.9790946 0.9787348 0.9786418 0.9771966
35 50 96 83 8 113 1 117
0.9771966 0.9767920 0.9763235 0.9761400 0.9759294 0.9756681 0.9749183 0.9743390
89 124 18 133 93 40 41 129
0.9735054 0.9725387 0.9724836 0.9704360 0.9701420 0.9694070 0.9691967 0.9685807
13 46 55 68 100 30
0.9681938 0.9681938 0.9627714 0.9611034 0.9597168 0.9548599
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.