build_jabba | R Documentation |
Creates a data list with JABBA input and settings to be passed to fit_jabba()
build_jabba(
catch = NULL,
cpue = NULL,
se = NULL,
auxiliary = NULL,
auxiliary.se = NULL,
auxiliary.type = c("z", "effort", "bk", "bbmsy", "ffmsy")[1],
assessment = "jabba",
scenario = "jabba",
model.type = c("Schaefer", "Fox", "Pella", "Pella_m"),
add.catch.CV = TRUE,
catch.cv = 0.1,
catch.error = c("random", "under")[1],
Plim = 0,
r.dist = c("lnorm", "range"),
r.prior = c(0.2, 0.5),
K.dist = c("lnorm", "range"),
K.prior = NULL,
psi.dist = c("lnorm", "beta"),
psi.prior = c(0.9, 0.25),
b.prior = c(FALSE, 0.3, NA, c("bk", "bbmsy", "ffmsy")[1]),
BmsyK = 0.4,
shape.CV = 0.3,
sets.q = 1:(ncol(cpue) - 1),
sigma.est = TRUE,
sets.var = 1:(ncol(cpue) - 1),
fixed.obsE = ifelse(is.null(se), 0.1, 0.001),
auxiliary.obsE = ifelse(is.null(auxiliary.se), 0.1, 0.001),
auxiliary.sigma = TRUE,
auxiliary.lag = 1,
qA.cv = 0.1,
sets.varA = 1:(ncol(auxiliary) - 1),
sigma.proc = TRUE,
proc.dev.all = TRUE,
igamma = c(4, 0.01),
projection = FALSE,
TACs = NULL,
TACint = NULL,
imp.yr = NULL,
pyrs = NULL,
P_bound = c(0.02, 1.3),
sigmaobs_bound = 1,
sigmaproc_bound = 0.2,
q_bounds = c(10^-30, 1000),
K_bounds = c(0.01, 10^10),
qA_bounds = c(10^-30, 1000),
harvest.label = c("Hmsy", "Fmsy")[2],
catch.metric = "(t)",
verbose = TRUE
)
catch |
catch time series, requires data.frame(year, catch) |
cpue |
cpue time series, requires data.frame(year, cpue.1,cpue.2,...,cpue.N) |
se |
optional log standard error (CV) time series,requires data.frame(year, se.1,se.2,...,se.N) |
auxiliary |
additional time series of either c(Z,Effort,B/B0,B/Bmsy,F/Fmsy) |
auxiliary.type |
c("effort","z","bk","bbmsy","ffmsy") |
assessment |
= "example", |
scenario |
= "s1", |
model.type |
= c("Schaefer","Fox","Pella","Pella_m"), |
add.catch.CV |
= c(TRUE,FALSE) option estimate catch with error |
catch.cv |
catch error on log-scale (default = 0.1) |
catch.error |
can be random or directional under reporting "under" |
Plim |
= 0, # Set Plim = Blim/K where recruitment may become impaired (e.g. Plim = 0.25) PRIORS |
r.dist |
= c("lnorm","range"), # prior distribution for the intrinsic rate population increas |
r.prior |
= c(0.2,0.5), # prior(mu, lod.sd) for intrinsic rate of population increase |
K.dist |
= c("lnorm","range"), # prior distribution for unfished biomass K = B0 |
K.prior |
= NULL, # prior(mu,CV) for the unfished biomass K = B0 |
psi.dist |
= c("lnorm","beta"), # prior distribution for the initial biomass depletion B[1]/K |
psi.prior |
= c(0.9,0.25), # prior(mu, CV) for the initial biomass depletion B[1]/K |
b.prior |
= c(FALSE,0.3,NA,c("bk","bbmy","ffmsy")[1]), # depletion prior set as d.prior = c(mean,cv,yr,type=c("bk","bbmsy")) |
BmsyK |
= 0.4, # Inflection point of the surplus production curve, requires Pella-Tomlinson (model = 3 | model 4) |
shape.CV |
= 0.3, # CV of the shape m parameters, if estimated with Pella-Tomlinson (Model 4) VARIANCE options |
sets.q |
= 1:(ncol(cpue)-1), # assigns catchability q to different CPUE indices. Default is each index a seperate q |
sigma.est |
= TRUE, # Estimate additional observation variance |
sets.var |
= 1:(ncol(cpue)-1), # estimate individual additional variace |
fixed.obsE |
# Minimum fixed observation error |
auxiliary.obsE |
# Fixed observation error for auxiliary data |
auxiliary.sigma |
# TRUE/FALSE |
auxiliary.lag |
lag option in years (default 1) for effort, z and ffmsy |
qA.cv |
precision on lognormal prior for e.g. qA*Z (not applicable to effort) |
sigma.proc |
= TRUE, # TRUE: Estimate process error, else set to value |
proc.dev.all |
= TRUE, # TRUE: All year, year = starting year |
igamma |
= c(3,0.01), # prior for process error variance, default informative igamma ~ mean 0.07, CV 0.4 |
projection |
= FALSE, # Switch on by Projection = TRUE |
TACs |
= NULL |
TACint |
= NULL, # default avg last 3 years |
imp.yr |
= NULL, # default last year plus ONE |
pyrs |
= NULL, # Set number of projections years |
P_bound |
= c(0.02,1.3), # Soft penalty bounds for b/k |
sigmaobs_bound |
= 1, # Adds an upper bound to the observation variance |
sigmaproc_bound |
= 0.2, # Adds an upper bound to the process variance |
qA_bounds |
Defines lower and upper bounds for q of auxiliary data type effort |
harvest.label |
= c("Hmsy","Fmsy")[2], # choose label preference H/Hmsy versus Fmsy |
catch.metric |
"(t)" # Define catch input metric e.g. (tons) "000 t" |
verbose |
option show cat comments |
auxiliary , se |
optional input standard errors on auxilary data |
q_bounds= |
c(10^-30,1000), # Defines lower and upper bounds for q |
K_bounds= |
c(0.01,10^10), # Defines lower and upper bounds for K |
List to be used as data input to JABBA JAGS model.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.