BM | R Documentation |
The (S3) generic function for simulation of brownian motion, brownian bridge, geometric brownian motion, and arithmetic brownian motion.
BM(N, ...)
BB(N, ...)
GBM(N, ...)
ABM(N, ...)
## Default S3 method:
BM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
BB(N =1000,M=1,x0=0,y=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
GBM(N =1000,M=1,x0=1,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)
## Default S3 method:
ABM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)
N |
number of simulation steps. |
M |
number of trajectories. |
x0 |
initial value of the process at time |
y |
terminal value of the process at time |
t0 |
initial time. |
T |
final time. |
Dt |
time step of the simulation (discretization). If it is |
theta |
the interest rate of the |
sigma |
the volatility of the |
... |
potentially further arguments for (non-default) methods. |
The function BM
returns a trajectory of the standard Brownian motion (Wiener process) in the time interval [t_{0},T]
. Indeed, for W(dt)
it holds true that
W(dt) \rightarrow W(dt) - W(0) \rightarrow \mathcal{N}(0,dt)
, where \mathcal{N}(0,1)
is normal distribution
Normal
.
The function BB
returns a trajectory of the Brownian bridge starting at x_{0}
at time t_{0}
and ending
at y
at time T
; i.e., the diffusion process solution of stochastic differential equation:
dX_{t}= \frac{y-X_{t}}{T-t} dt + dW_{t}
The function GBM
returns a trajectory of the geometric Brownian motion starting at x_{0}
at time t_{0}
;
i.e., the diffusion process solution of stochastic differential equation:
dX_{t}= \theta X_{t} dt + \sigma X_{t} dW_{t}
The function ABM
returns a trajectory of the arithmetic Brownian motion starting at x_{0}
at time t_{0}
;
i.e.,; the diffusion process solution of stochastic differential equation:
dX_{t}= \theta dt + \sigma dW_{t}
X |
an visible |
A.C. Guidoum, K. Boukhetala.
Allen, E. (2007). Modeling with Ito stochastic differential equations. Springer-Verlag, New York.
Jedrzejewski, F. (2009). Modeles aleatoires et physique probabiliste. Springer-Verlag, New York.
Henderson, D and Plaschko, P. (2006). Stochastic differential equations in science and engineering. World Scientific.
This functions BM
, BBridge
and GBM
are available in other packages such as "sde".
op <- par(mfrow = c(2, 2))
## Brownian motion
set.seed(1234)
X <- BM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Brownian bridge
set.seed(1234)
X <- BB(M =100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Geometric Brownian motion
set.seed(1234)
X <- GBM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
## Arithmetic Brownian motion
set.seed(1234)
X <- ABM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")
par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.