View source: R/designMatrices.R
designMatrices | R Documentation |
Generate design matrices, and display them at console.
designMatrices(modeltype=c("PCM", "RSM"), maxKi=NULL, resp=resp,
ndim=1, A=NULL, B=NULL, Q=NULL, R=NULL, constraint="cases",...)
## S3 method for class 'designMatrices'
print(x, ...)
designMatrices.mfr(resp, formulaA=~ item + item:step, facets=NULL,
constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
progress=FALSE)
designMatrices.mfr2(resp, formulaA=~ item + item:step, facets=NULL,
constraint=c("cases", "items"), ndim=1, Q=NULL, A=NULL, B=NULL,
progress=FALSE)
.A.matrix(resp, formulaA=~ item + item*step, facets=NULL,
constraint=c("cases", "items"), progress=FALSE, maxKi=NULL)
rownames.design(X)
.A.PCM2( resp, Kitem=NULL, constraint="cases", Q=NULL)
# generates ConQuest parametrization of partial credit model
.A.PCM3( resp, Kitem=NULL ) # parametrization for A matrix in the dispersion model
modeltype |
Type of item response model. Until now, the
partial credit model ( |
maxKi |
A vector containing the maximum score per item |
resp |
Data frame of item responses |
ndim |
Number of dimensions |
A |
The design matrix for linking item category parameters
to generalized item parameters |
B |
The scoring matrix of item categories on |
Q |
A loading matrix of items on dimensions with number of rows equal the number of items and the number of columns equals the number of dimensions in the item response model. |
R |
This argument is not used |
x |
Object generated by |
X |
Object generated by |
formulaA |
An R formula object for generating the |
facets |
A data frame with observed facets. The number of rows must be equal
to the number of rows in |
constraint |
Constraint in estimation: |
Kitem |
Maximum number of categories per item |
progress |
Display progress for creation of design matrices |
... |
Further arguments |
The function .A.PCM2
generates the Conquest parametrization
of the partial credit model.
The function .A.PCM3
generates the parametrization for the A
design matrix in the dispersion model for ordered data (Andrich, 1982).
The function designMatrices.mfr2
handles multi-faceted design for
items with differing number of response options.
Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika, 47(1), 105-113. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF02293856")}
See data.sim.mfr
for some examples for creating design matrices.
###########################################################
# different parametrizations for ordered data
data( data.gpcm )
resp <- data.gpcm
# parametrization for partial credit model
A1 <- TAM::designMatrices( resp=resp )$A
# item difficulty and threshold parametrization
A2 <- TAM::.A.PCM2( resp )
# dispersion model of Andrich (1982)
A3 <- TAM::.A.PCM3( resp )
# rating scale model
A4 <- TAM::designMatrices( resp=resp, modeltype="RSM" )$A
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.