caModel: Function caModel estimates parameters of conjoint analysis...

Description Usage Arguments Author(s) References See Also Examples

View source: R/caModel.R

Description

Function caModel estimates parameters of conjoint analysis model for one respondent. Function caModel returns vector of estimated parameters of traditional conjoint analysis model.

Usage

1
caModel(y, x)

Arguments

y

vector of preferences, vector should be like single profil of preferences

x

matrix of profiles

Author(s)

Andrzej Bak andrzej.bak@ue.wroc.pl,

Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl

Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint

References

Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.

Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.

Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.

SPSS 6.1 Categories (1994), SPSS Inc., Chicago.

See Also

Conjoint

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
#Example 1
library(conjoint)
data(tea)
model=caModel(tprefm[1,], tprof)
print(model)

#Example 2
library(conjoint)
data(chocolate)
model=caModel(cprefm[1,], cprof)
print(model)

#Example 3
library(conjoint)
data(journey)
model=caModel(jpref[306,], jprof)
print(model)

Example output

Call:
lm(formula = frml)

Residuals:
      1       2       3       4       5       6       7       8       9      10 
 1.1345 -1.4897  0.3103 -0.2655  0.3103  0.1931  1.5931 -1.4310 -1.4310  1.1207 
     11      12      13 
 0.3690  1.1931 -1.6069 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)   
(Intercept)          3.3937     0.5439   6.240  0.00155 **
factor(x$price)1    -1.5172     0.7944  -1.910  0.11440   
factor(x$price)2    -1.1414     0.6889  -1.657  0.15844   
factor(x$variety)1  -0.4747     0.6889  -0.689  0.52141   
factor(x$variety)2  -0.6747     0.6889  -0.979  0.37234   
factor(x$kind)1      0.6586     0.6889   0.956  0.38293   
factor(x$kind)2     -1.5172     0.7944  -1.910  0.11440   
factor(x$aroma)1     0.6293     0.5093   1.236  0.27150   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.78 on 5 degrees of freedom
Multiple R-squared:  0.8184,	Adjusted R-squared:  0.5642 
F-statistic:  3.22 on 7 and 5 DF,  p-value: 0.1082


Call:
lm(formula = frml)

Residuals:
   Min     1Q Median     3Q    Max 
 -0.50  -0.25   0.00   0.25   0.75 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)         8.583e+00  1.596e-01  53.790 2.77e-09 ***
factor(x$kind)1     2.000e+00  2.500e-01   8.000 0.000203 ***
factor(x$kind)2    -2.000e+00  2.500e-01  -8.000 0.000203 ***
factor(x$kind)3     6.000e+00  2.500e-01  24.000 3.44e-07 ***
factor(x$price)1   -5.523e-16  1.925e-01   0.000 1.000000    
factor(x$price)2   -2.500e-01  2.257e-01  -1.108 0.310361    
factor(x$packing)1  2.443e-16  1.443e-01   0.000 1.000000    
factor(x$weight)1  -3.333e-01  1.925e-01  -1.732 0.133975    
factor(x$weight)2  -8.333e-02  2.257e-01  -0.369 0.724605    
factor(x$calorie)1 -1.000e+00  1.443e-01  -6.928 0.000448 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5774 on 6 degrees of freedom
Multiple R-squared:  0.9941,	Adjusted R-squared:  0.9853 
F-statistic: 112.7 on 9 and 6 DF,  p-value: 5.374e-06


Call:
lm(formula = frml)

Residuals:
        1         2         3         4         5         6         7         8 
 2.192308 -2.009615  2.557692 -2.740385  0.346154 -0.355769  0.009615 -3.307692 
        9        10        11        12        13        14 
 2.394231 -1.442308  2.355769  0.740385 -0.346154 -0.394231 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)   
(Intercept)                4.9375     0.8685   5.685  0.00235 **
factor(x$purpose)1         1.3125     1.4003   0.937  0.39165   
factor(x$purpose)2        -0.4375     1.4003  -0.312  0.76733   
factor(x$purpose)3         1.7356     1.6158   1.074  0.33184   
factor(x$form)1            0.9375     0.8685   1.080  0.32966   
factor(x$season)1         -0.6923     0.8617  -0.803  0.45823   
factor(x$accommodation)1   1.3125     1.4003   0.937  0.39165   
factor(x$accommodation)2   0.7356     1.6158   0.455  0.66802   
factor(x$accommodation)3  -1.4375     1.4003  -1.027  0.35171   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.107 on 5 degrees of freedom
Multiple R-squared:  0.6034,	Adjusted R-squared:  -0.0311 
F-statistic: 0.951 on 8 and 5 DF,  p-value: 0.549

conjoint documentation built on May 1, 2019, 8:05 p.m.

Related to caModel in conjoint...