Description Usage Arguments Author(s) References See Also Examples
Function caModel estimates parameters of conjoint analysis model for one respondent. Function caModel returns vector of estimated parameters of traditional conjoint analysis model.
1 | caModel(y, x)
|
y |
vector of preferences, vector should be like single profil of preferences |
x |
matrix of profiles |
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
Call:
lm(formula = frml)
Residuals:
1 2 3 4 5 6 7 8 9 10
1.1345 -1.4897 0.3103 -0.2655 0.3103 0.1931 1.5931 -1.4310 -1.4310 1.1207
11 12 13
0.3690 1.1931 -1.6069
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.3937 0.5439 6.240 0.00155 **
factor(x$price)1 -1.5172 0.7944 -1.910 0.11440
factor(x$price)2 -1.1414 0.6889 -1.657 0.15844
factor(x$variety)1 -0.4747 0.6889 -0.689 0.52141
factor(x$variety)2 -0.6747 0.6889 -0.979 0.37234
factor(x$kind)1 0.6586 0.6889 0.956 0.38293
factor(x$kind)2 -1.5172 0.7944 -1.910 0.11440
factor(x$aroma)1 0.6293 0.5093 1.236 0.27150
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.78 on 5 degrees of freedom
Multiple R-squared: 0.8184, Adjusted R-squared: 0.5642
F-statistic: 3.22 on 7 and 5 DF, p-value: 0.1082
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-0.50 -0.25 0.00 0.25 0.75
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.583e+00 1.596e-01 53.790 2.77e-09 ***
factor(x$kind)1 2.000e+00 2.500e-01 8.000 0.000203 ***
factor(x$kind)2 -2.000e+00 2.500e-01 -8.000 0.000203 ***
factor(x$kind)3 6.000e+00 2.500e-01 24.000 3.44e-07 ***
factor(x$price)1 -5.523e-16 1.925e-01 0.000 1.000000
factor(x$price)2 -2.500e-01 2.257e-01 -1.108 0.310361
factor(x$packing)1 2.443e-16 1.443e-01 0.000 1.000000
factor(x$weight)1 -3.333e-01 1.925e-01 -1.732 0.133975
factor(x$weight)2 -8.333e-02 2.257e-01 -0.369 0.724605
factor(x$calorie)1 -1.000e+00 1.443e-01 -6.928 0.000448 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5774 on 6 degrees of freedom
Multiple R-squared: 0.9941, Adjusted R-squared: 0.9853
F-statistic: 112.7 on 9 and 6 DF, p-value: 5.374e-06
Call:
lm(formula = frml)
Residuals:
1 2 3 4 5 6 7 8
2.192308 -2.009615 2.557692 -2.740385 0.346154 -0.355769 0.009615 -3.307692
9 10 11 12 13 14
2.394231 -1.442308 2.355769 0.740385 -0.346154 -0.394231
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9375 0.8685 5.685 0.00235 **
factor(x$purpose)1 1.3125 1.4003 0.937 0.39165
factor(x$purpose)2 -0.4375 1.4003 -0.312 0.76733
factor(x$purpose)3 1.7356 1.6158 1.074 0.33184
factor(x$form)1 0.9375 0.8685 1.080 0.32966
factor(x$season)1 -0.6923 0.8617 -0.803 0.45823
factor(x$accommodation)1 1.3125 1.4003 0.937 0.39165
factor(x$accommodation)2 0.7356 1.6158 0.455 0.66802
factor(x$accommodation)3 -1.4375 1.4003 -1.027 0.35171
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.107 on 5 degrees of freedom
Multiple R-squared: 0.6034, Adjusted R-squared: -0.0311
F-statistic: 0.951 on 8 and 5 DF, p-value: 0.549
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.