Description Usage Arguments Author(s) References See Also Examples
Function caUtilities calculates utilities of attribute's levels. Function returns vector of utilities.
1 | caUtilities(y,x,z)
|
y |
matrix of preferences |
x |
matrix of profiles |
z |
matrix of levels names |
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland http://keii.ue.wroc.pl/conjoint
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
caPartUtilities
and caTotalUtilities
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #Example 1
library(conjoint)
data(tea)
uslall<-caUtilities(tprefm,tprof,tlevn)
print(uslall)
#Example 2
library(conjoint)
data(chocolate)
uslall<-caUtilities(cprefm,cprof,clevn)
print(uslall)
#Example 3
library(conjoint)
data(journey)
usl<-caUtilities(jpref[1,],jprof,jlevn)
print("Individual utilities for first respondent:")
print(usl)
|
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-5,1888 -2,3761 -0,7512 2,2128 7,5134
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3,55336 0,09068 39,184 < 2e-16 ***
factor(x$price)1 0,24023 0,13245 1,814 0,070 .
factor(x$price)2 -0,14311 0,11485 -1,246 0,213
factor(x$variety)1 0,61489 0,11485 5,354 1,02e-07 ***
factor(x$variety)2 0,03489 0,11485 0,304 0,761
factor(x$kind)1 0,13689 0,11485 1,192 0,234
factor(x$kind)2 -0,88977 0,13245 -6,718 2,76e-11 ***
factor(x$aroma)1 0,41078 0,08492 4,837 1,48e-06 ***
---
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
Residual standard error: 2,967 on 1292 degrees of freedom
Multiple R-squared: 0,09003, Adjusted R-squared: 0,0851
F-statistic: 18,26 on 7 and 1292 DF, p-value: < 2,2e-16
dev.new(): using pdf(file="Rplots1.pdf")
dev.new(): using pdf(file="Rplots2.pdf")
dev.new(): using pdf(file="Rplots3.pdf")
[1] 3.55336207 0.24022989 -0.14311494 -0.09711494 0.61488506 0.03488506
[7] -0.64977011 0.13688506 -0.88977011 0.75288506 0.41077586 -0.41077586
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-11,3305 -3,5546 0,4799 3,4799 9,8190
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8,68487 0,12648 68,667 < 2e-16 ***
factor(x$kind)1 -1,08908 0,19815 -5,496 4,62e-08 ***
factor(x$kind)2 -0,73276 0,19815 -3,698 0,000226 ***
factor(x$kind)3 -0,92241 0,19815 -4,655 3,55e-06 ***
factor(x$price)1 -0,57088 0,15254 -3,743 0,000190 ***
factor(x$price)2 0,11877 0,17887 0,664 0,506777
factor(x$packing)1 -0,02874 0,11440 -0,251 0,801714
factor(x$weight)1 -0,16858 0,15254 -1,105 0,269272
factor(x$weight)2 0,17337 0,17887 0,969 0,332575
factor(x$calorie)1 -0,64655 0,11440 -5,652 1,93e-08 ***
---
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
Residual standard error: 4,268 on 1382 degrees of freedom
Multiple R-squared: 0,1488, Adjusted R-squared: 0,1433
F-statistic: 26,85 on 9 and 1382 DF, p-value: < 2,2e-16
dev.new(): using pdf(file="Rplots4.pdf")
dev.new(): using pdf(file="Rplots5.pdf")
dev.new(): using pdf(file="Rplots6.pdf")
dev.new(): using pdf(file="Rplots7.pdf")
dev.new(): using pdf(file="Rplots8.pdf")
[1] 8.684865900 -1.089080460 -0.732758621 -0.922413793 2.744252874
[6] -0.570881226 0.118773946 0.452107280 -0.028735632 0.028735632
[11] -0.168582375 0.173371648 -0.004789272 -0.646551724 0.646551724
Call:
lm(formula = frml)
Residuals:
1 2 3 4 5 6 7 8
-3,19231 2,75962 -0,05769 0,49038 0,65385 0,10577 -0,75962 3,30769
9 10 11 12 13 14
-1,14423 -0,05769 -2,10577 -2,49038 -0,65385 3,14423
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4,9375 0,9037 5,464 0,0028 **
factor(x$purpose)1 -0,9375 1,4572 -0,643 0,5483
factor(x$purpose)2 -2,6875 1,4572 -1,844 0,1245
factor(x$purpose)3 3,6394 1,6814 2,165 0,0827 .
factor(x$form)1 -1,5625 0,9037 -1,729 0,1444
factor(x$season)1 0,6923 0,8967 0,772 0,4750
factor(x$accommodation)1 0,0625 1,4572 0,043 0,9674
factor(x$accommodation)2 1,6394 1,6814 0,975 0,3743
factor(x$accommodation)3 0,3125 1,4572 0,214 0,8387
---
Signif. codes: 0 '***' 0,001 '**' 0,01 '*' 0,05 '.' 0,1 ' ' 1
Residual standard error: 3,233 on 5 degrees of freedom
Multiple R-squared: 0,7634, Adjusted R-squared: 0,3849
F-statistic: 2,017 on 8 and 5 DF, p-value: 0,2281
dev.new(): using pdf(file="Rplots9.pdf")
dev.new(): using pdf(file="Rplots10.pdf")
dev.new(): using pdf(file="Rplots11.pdf")
dev.new(): using pdf(file="Rplots12.pdf")
[1] "Individual utilities for first respondent:"
[1] 4.93750000 -0.93750000 -2.68750000 3.63942308 -0.01442308 -1.56250000
[7] 1.56250000 0.69230769 -0.69230769 0.06250000 1.63942308 0.31250000
[13] -2.01442308
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.