View source: R/plot-stl_diagnostics.R
plot_stl_diagnostics | R Documentation |
An interactive and scalable function for visualizing time series STL Decomposition.
Plots are available in interactive plotly
(default) and static ggplot2
format.
plot_stl_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = c("observed", "season", "trend", "remainder", "seasadj"),
.frequency = "auto",
.trend = "auto",
.message = TRUE,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.title = "STL Diagnostics",
.x_lab = "",
.y_lab = "",
.interactive = TRUE
)
.data |
A |
.date_var |
A column containing either date or date-time values |
.value |
A column containing numeric values |
.facet_vars |
One or more grouping columns that broken out into |
.feature_set |
The STL decompositions to visualize. Select one or more of "observed", "season", "trend", "remainder", "seasadj". |
.frequency |
Controls the seasonal adjustment (removal of seasonality).
Input can be either "auto", a time-based definition (e.g. "2 weeks"),
or a numeric number of observations per frequency (e.g. 10).
Refer to |
.trend |
Controls the trend component. For STL, trend controls the sensitivity of the lowess smoother, which is used to remove the remainder. |
.message |
A boolean. If |
.facet_scales |
Control facet x & y-axis ranges. Options include "fixed", "free", "free_y", "free_x" |
.line_color |
Line color. |
.line_size |
Line size. |
.line_type |
Line type. |
.line_alpha |
Line alpha (opacity). Range: (0, 1). |
.title |
Plot title. |
.x_lab |
Plot x-axis label |
.y_lab |
Plot y-axis label |
.interactive |
If TRUE, returns a |
The plot_stl_diagnostics()
function generates a Seasonal-Trend-Loess decomposition.
The function is "tidy" in the sense that it works
on data frames and is designed to work with dplyr
groups.
STL method:
The STL method implements time series decomposition using
the underlying stats::stl()
. The decomposition separates the
"season" and "trend" components from
the "observed" values leaving the "remainder".
Frequency & Trend Selection
The user can control two parameters: .frequency
and .trend
.
The .frequency
parameter adjusts the "season" component that is removed
from the "observed" values.
The .trend
parameter adjusts the
trend window (t.window
parameter from stl()
) that is used.
The user may supply both .frequency
and .trend
as time-based durations (e.g. "6 weeks") or numeric values
(e.g. 180) or "auto", which automatically selects the frequency and/or trend
based on the scale of the time series.
A plotly
or ggplot2
visualization
library(dplyr)
# ---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%
filter(id == "H10") %>%
plot_stl_diagnostics(
date, value,
# Set features to return, desired frequency and trend
.feature_set = c("observed", "season", "trend", "remainder"),
.frequency = "24 hours",
.trend = "1 week",
.interactive = FALSE)
# ---- GROUPS ----
m4_hourly %>%
group_by(id) %>%
plot_stl_diagnostics(
date, value,
.feature_set = c("observed", "season", "trend"),
.interactive = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.